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Executive Summary  

Modern intersection control primarily relies on actuated systems that respond to traffic at the intersection. 

MnDOT and many local Minnesota agencies have traditionally used embedded loop detectors in the pavement 

for detecting vehicles. Although the performance of a well-placed loop detector has yet to be matched by any 

other method, changes in the vehicle fleet (higher use of non-ferrous material), as well as increased need for 

more comprehensive detection (vulnerable road users, all lanes individual advance and stop-line detection), has 

resulted in the increased use of non-intrusive technologies (NIT).  

There are studies evaluating the performance of NIT detection. Still, all have been racing against obsolescence 

given the rapid developments in the market, and more importantly, all of them have focused on the 

comparative evaluation of different detection technologies. This report 1) synthesizes national and local 

experience in procuring, deploying, and maintaining NITs for signal operations and 2) reports the results of year-

round observation and recording of the performance of selected real deployments of all major products used in 

Minnesota. In achieving the first objective, this research conducts a market search on currently employed NITs, 

synthesizes current research on the performance of NITs, and surveys local signal operators on their use and 

experiences operating different NIT devices. In achieving the second objective, we select several sites within the 

Twin Cities metropolitan area and analyze their performance when subjected to different environmental 

conditions. 

The market search results and prior research synthesis show that many NITs used for detection employ video, 

radar, or a combination of the two for detecting cars. Even though these detection systems employ various 

technologies, prior research shows that no single system outperforms others in every condition. Different NIT 

devices perform better than others depending on environmental factors, such as the time of day, location, and 

weather. The interviews with signal operators reinforce these results as signal operators in St. Paul and 

Hennepin County show no preference for one detection technology over the others. Both interviews describe 

the difficulty of operating multiple types of detection technology and strongly suggest a single type for any 

municipality. Still, they make no statements on the performance of different NITs used for detection. However, 

the interviews indicate that certain weather conditions, namely severe storms involving high wind, are more 

detrimental to NIT performance and increase budgeted costs. Signal operators report that the most significant 

factors in maintaining NIT performance are using a central monitoring system for active NIT devices, properly 

installing sun shields, and using heated lenses. Properly installing sun shields ensures that glare is minimized, 

reducing potential failures. Employing a central monitoring system helps operators minimize some NIT failures 

by adjusting camera angles and zooming remotely. In addition, the interviews describe how a primary 

motivation for switching from loop detectors to NIT is cost. MnDOT provides the research team with cost 

estimates for each detection technology, and we find that loop detector installations can cost 1.5 times as much 

as a NIT installation.  

Our work builds off prior research and focuses on weather specific to Minnesota, namely storms involving high 

winds, cold temperatures, and heavy snow, and evaluating the performance of NITs on those conditions. The 

research results reinforce those of prior works that no single (camera-based) NIT outperforms others in all 

conditions. However, when observing the performance of both Iteris and Vision detection technologies under 



 

 

intense winter storms, we find that the Vision detection technology is less susceptible to long-term failures that 

require on-site maintenance (e.g., snow, dirt, rain, etc., blocking the camera lens). The interviews with signal 

operators report that most of the cost of maintaining NITs comes from on-site maintenance. Therefore, our 

analysis and recommendations focus on these types of NIT failures. 

Our studies with selected road intersections recommend that MnDOT take into account weather conditions 

local to a specific intersection when determining which NIT to choose as performance varies between the 

different NITs when exposed to different weather conditions. We also recommend installing glare protection 

and heated shields as recommended by signal operators and using a central monitoring system for NIT devices 

that allows operators to adjust detection areas in the field of view and adjust the tilt and zoom of the cameras to 

reduce the need for on-site maintenance. The results also indicate further analysis needs to be done on the 

effects of glare and intersection geometry, as glare has a minor effect on NIT performance, causing late or early 

car detections. Finally, our results show different failure rates between locations with the same detection 

technology, indicating that intersection geometry or other local factors impact NIT performance.  
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Introduction  

1.1  Objectives 

Intersection control can be pre-timed, or vehicle actuated. Modern controllers implement natively only 

actuated control with pre-timed implemented as the case of actuated, termed vehicle recall. Actuated 

signals respond to the traffic present at the intersection so that the pattern of the signal (the length and 

order phases) depends on the traffic and can be different at every cycle. In all versions of actuated 

control, the cornerstone of the system is vehicle detection. MnDOT and many local Minnesota agencies 

have traditionally used embedded loop detectors in the pavement for detecting vehicles. Although the 

performance of a well-placed loop detector has yet to be matched by any other method, changes in the 

vehicle fleet (higher use of non-ferrous material), as well as increased need for more comprehensive 

detection (vulnerable road users, all lanes individual advance and stop line detection), has resulted in 

the increased use of non-Intrusive technologies (NIT) for detection. There are studies evaluating the 

performance of NIT detection. Still, all have been racing against obsolescence given the rapid 

developments in the market, and more importantly, all have focused on the comparative evaluation of 

different detection technologies. Unfortunately, very few studies have identified the long-term true 

costs of operating and maintaining such intersection control systems. In this project, we guide MnDOT 

and Local Road Research Board (LRRB) members in selecting the most appropriate technology for a 

given location and evaluating the expertise, effort, and material cost of maintaining each of these 

systems year-round in Minnesota. Achieving this goal involves two parallel but separate efforts.  

The first effort synthesizes national and local experience in procuring, deploying, and maintaining NITs 

for signal operations. On the national level, the project establishes a baseline on the currently available 

detection technologies and the products in the market that employ them. It also composes a synthesis 

of current research on the performance of NITs. On the local level, we survey signal operation and 

maintenance offices in St. Paul and Hennepin County on their use and experiences with NITs for signal 

control to collect practitioner experiences in operating and maintaining the different detection 

products. 

The second effort involves year-round observation and recording of the performance of selected real 

deployments of all major products used in Minnesota. We select sites based on varying geometry and 

demand characteristics. At these sites, field or remotely placed hardware records all control signals 

(actuations and phase changes) coming in and out of the controller while recording the detection 

system's available raw data and video from additional Minnesota Traffic Observatory (MTO) cameras 

separately. We produce records of system errors affecting actuated control from these records and 

correlate the event records with weather measurements of wind and temperature and environmental 

conditions like snow, rain, pavement conditions, time of day (lighting), etc. Please refer to Appendix A 

for more information about the overall project goals. 
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1.2  Prior Work 

Most prior work in evaluating NITs is based on product evaluation and compares the accuracy of a 

system or systems to the accuracy of loop detectors. Many agencies have been employing video 

detection at intersections for over two decades, and some states, such as Texas, have developed 

manuals for implementation [1]. Cal Poly’s 1990 evaluation of 10 video-based detection systems yielded 

vehicle count and speed errors of less than 20% over a mix of low-, moderate-, and high-traffic densities. 

However, transitional light conditions, occlusion, and slow-moving, high-density traffic conditions 

reduced the accuracy of these systems [2]. Over the past two decades, video detection research has 

indicated that lighting conditions are the main cause of detection errors. Systems usually have more 

problems at night due to headlight glare [3, 4, 5]. During the day, the sun can create stationary or 

moving shadows that confuse the detector, and glare can reduce camera visibility [3]. Work done in the 

late 1990s [6] and early 2000s [3, 7, 8] on commercially available systems indicates that lighting 

conditions and shadows have the most significant effect on NIT performance and that loop detectors 

perform better in the majority of cases when compared to NIT. 

It is challenging to compare the performance of two or more NIT products at installations located at 

different intersections or points in time. Setups using side-by-side comparisons can provide an 

advantage over other installations, as the video-based detection (VID) systems process the same image 

using their own cameras. The National Institute for Advanced Transportation Technology (NIATT) at the 

University of Idaho conducted the most recent study [9] with funding from the Idaho Transportation 

Department. NIATT researchers evaluated four video, two radar, one thermal, and two hybrid detection 

systems, and the results proved inconclusive. Based on the results of this study, no single system 

universally performed better than all other systems. Depending on the time of day or weather 

conditions, many system types tested could claim their technology outperformed all others.  

 

1.3  Research Goals and Approach 

The expected benefits from this research encompass several categories. Table 1.1 provides an overview 

of these benefits.  

The cost of the vehicle detection instrumentation for a fully actuated control can go as high as $40,000 

per intersection, and several of the currently operational intersections owned by MnDOT had to be put 

on recall mode in the winter of 2021, one of the coldest winters in recent records [11], due to failures of 

the detection system, further increasing costs. Such events represent safety hazards until they are 

discovered and can generate long delays to road users and dramatically increase maintenance costs. 

This project identifies the most common forms of failure, develops and proposes early detection of 

performance reductions, and provides guidelines on the required periodic maintenance and 

replacement (possibly half-life of the entire system) actions that can minimize signal control times. 
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These results will benefit life-cycle cost estimation, leading to higher returns on investment and 

minimizing user costs in traffic delays and crashes.  

Table 1.1 Expected Research Benefits 

Benefit Category 

 

Are the benefits 

quantifiable (Yes/No) 

How these key benefits will be quantified? 

Climate Change & 
Environment 

Yes Cumulative time vehicles spent idling on red due to 
NIT miss detection. Separately for main and side 
road approaches. 

Improved Safety Yes % reduction of time period intersection is placed on 
all phase recall. 
% of time bad detection resulted in insufficient 
yellow clearance interval.  

Operation and 
Maintenance  

Yes Newer detection technology for traffic signals may 
perform better at same or reduced costs. 
Determine which technology has the lowest long 
term costs for the life of the signal system. 

 

In addition to the technology reports and synthesis documents we deliver, the final goal is to guide 

MnDOT and LRRB members not only in selecting the most appropriate technology for a given location 

but also onthe expected expertise, effort, and cost involved in maintaining each of these systems year-

round in Minnesota for the life of the signal system.  

The overall approach combines the information gathered from the technology reports, synthesis 

documents, interviews, and research to provide a decision-making tool to guide signal design by MnDOT 

and other public works entities in Minnesota. This decision-making tool takes the form of a flowchart 

describing a system for evaluating the performance of NIT in various conditions. The technology reports, 

synthesis documents, and interviews inform the results of the system to provide domain expertise and 

help decide the optimal NIT technology for Minnesota weather. 

The scope of this research is limited to NIT devices used by MnDOT and to weather patterns and 

locations in Minnesota.  

 

1.4  Report Organization 

The report is structured as follows. Chapter 2 overviews the process and results of the survey of 

intersection owners and operators. Chapter 3 discusses the market search for different types of 
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detection technologies. Chapter 4 discusses the data used in our research approach. Chapter 5 discusses 

the research approach, implementation, and results. Finally, Chapter 6 discusses the analysis of the 

overall results of the project, conclusions, recommendations for implementation, and further testing.  
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Chapter 2:  Summary of Interviews with 

intersection owners/operators 

2.1  Introduction 

This study collects and compiles real-world experience working with and maintaining NIT vehicle 

detection installations in this task. To achieve this goal, the study collects survey results from Hennepin 

County and the City of St. Paul and provides a summary below. The original report for task 2, containing 

the motivation, survey, and results, is in Appendix B.   

 

2.2  Summary of Interviews 

The Hennepin County interview took place on June 17th, 2022, in Median, MN with Mr. Ben Hao and 

several other county employees at the Hennepin County Traffic Management Center, and the City of St. 

Paul interview took place on October 17th, 2022 over email and teleconference with Mr. Mike Klobucar 

at the City of St. Paul Traffic & Light Division in the Department of Public Works. Hennepin County 

reports that they “operate[s] 450 signals”. When prompted on the types of signals and technologies 

deployed, they said, “all signals are semi or fully actuated” and “vehicle detection utilizes video NITs. No 

loops remain in use”. In comparison, the City of St. Paul reports that they “operate[s] 390 signals” with 

“approximately 90% of these signals are actuated” and “approximately 70% of the signals still use loops 

for vehicle detection while a couple of locations use Wavetronix radar”.  Both municipalities use Vision 

and Terra products for NIT detection and are testing GridSmart products. Hennepin County also deploys 

Encore by Econolite and has been testing Iteris Next. While Hennepin County has switched from loop 

detectors to NIT, the City of St. Paul is still phasing out loop detectors, saying the “current plan is to 

move towards video by replacing loops with video when [the] road is resurfaced”. Still, both 

municipalities are committed to making the switch. The change is primarily motivated by the flexibility 

of NIT when compared to loop detectors, as operators can easily reconfigure detection zones in NIT. The 

City of St. Paul also states that their “main reason for switching to video is to adequately cover the bike 

lanes”. Hennepin County instead points to cost-saving measures as its primary motivating factor, saying 

“video is cheaper to maintain due to mill and overlay (from ops or construction budget)”. Both entities 

find that environmental factors play the most significant role in NIT failures, with Hennepin County 

specifying that “sun glare also causes contrast failure” and that “It is important to take the horizon into 

consideration when install[ing] the camera”. 

In contrast, the City of St. Paul says the “main cause of down time [is] due to storms such as lighting, 

strong winds, heavy snow fall, knocked down poles due to accidents and camera failures”. Both entities 

use a central signal system for monitoring NIT device alerts and downtimes, which they report as 

incredibly helpful in resolving NIT failures. These central systems allow operators to remotely adjust NIT 
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camera views and detection zones to help mitigate NIT failures and the need for operators to go on-site 

to diagnose problems. Hennepin County also reports that “camera housing with heated lens is 

absolutely necessary” and properly installed sun shields are vital for optimal performance. 

Regarding overall maintenance schedules, both entities report that remote adjustments through the 

central monitoring system are made as needed and cost the time for adjustment. Hennepin County 

reports that it performs annual lens cleanings for 450 intersections with costs from 188k to 218k 

including the labor and non-labor costs.1 The City of St. Paul also performs annual cleanings on all 

cameras but conducts additional cleanings as needed after significant winter storms. They also report 

that “all systems are reviewed every three weeks as well as after major events involving strong winds”. 

Both entities state no issue with system providers or helpdesk responsiveness and costs and find no 

need for stockpiling inventory due to the rarity of physical device failures and the fact that systems are 

replaced/discontinued by the manufacturer every 10-15 years. A primary concern of both Hennepin 

County and the City of St. Paul is reducing the number of different systems used. They both report that 

relying on one system for the entire municipality reduces the burden on technicians/operators as they 

only need to learn how to perform maintenance on that one product. Additionally, neither entity 

reported that any of the NIT products deployed provided better functionality/ease of programming than 

the others. 

 

                                                           
1 “The accounting department filtered the labor and non-labor costs for lens cleaning and the summary shows the 

annual cost ranged from 188K to 218K.” 
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Chapter 3:  NIT Products Description 

3.1  Introduction 

This section overviews the most commonly used NIT detection products MnDOT employs. These include 

the Gridsmart Cubic system, the Autoscope Vision system, and the Iteris Vantage Next System. More 

information on the companies and products currently on the market can be found in Appendix C. For 

cost comparison, we list the prices of loop detector contracts in Table 3.1. These prices are provided by 

MnDOT. 

Table 3.1 Contract prices for loop detectors as of March 2024 

Item Cost 

EDI 4 CH detector card $332.00 

6x6 loop $1300 

1 ft homerun/lead in cable $1.25 

 

3.2  Autoscope – Vision 

GENERAL DESCRIPTION OF EQUIPMENT: Autoscope Vision® is an integrated camera-processor 
sensor that provides high-performance stop bar vehicle detection, bicycle detection and 
differentiation, advanced vehicle detection, traffic data collection, and High-Definition video 
surveillance. Autoscope Vision is capable of concurrently satisfying multiple transportation 
management objectives:  

● Stop bar vehicle detection  

● Bicycle detection and differentiation  

● Advanced vehicle detection up to 600 feet from Vision sensor  

● Traffic data collection  

● HD video surveillance  
 
TECHNOLOGY USED: Machine Vision using high-definition (720p) camera 

SENSOR INSTALLATION: Autoscope Vision installs on existing signal poles, mast arms, and luminaire 
standards.  

INSTALLATION REQUIREMENTS: The camera and sensor are integrated into one unit. Camera 
mounting over the center of monitored lanes provides optimum performance. The minimum camera 
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mounting height is 30 ft. Greater heights may be required to minimize vehicle occlusion when using 
side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Six to seven  

NUMBER OF DEVICES PER INTERSECTION: one per intersection leg (a four-lane intersection will 
have cameras). 

COST (MnDOT contract prices as of March 2024): 

● $6915.00 per camera 

● $4450.00 per camera control unit (CCU) 

● $1595.00 per 1400ft of cable 

● $150.00 per camera bracket 

3.3  Iteris – Vantage Next 

GENERAL DESCRIPTION OF EQUIPMENT: Vantage Next® is Iteris’ second-generation vehicle detection 
platform that capitalizes on the latest technology. Vantage Next uses a powerful processor that 
enables future functional growth while maintaining proven Iteris video detection performance and 
reliability.  One significant difference to the Edge2 product family is that the camera sensor is now a 
POE IP camera connected to the system through a CAT5 network cable. The platform also supports 
different sensors like the video and radar hybrid (Vantage Vector) and radar only (Vantage Radius).  

 
TECHNOLOGY USED: Machine vision using high-definition (720p) camera and radar 

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards.  

INSTALLATION REQUIREMENTS: Camera mounting over the center of monitored lanes is ideal, 
with a minimum height of 30 ft. Greater heights may be required to minimize vehicle occlusion 
when using side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Up to 4 sensors   

NUMBER OF DEVICES PER INTERSECTION: camera+radar for each mainline leg 
and one camera for each minor leg.  

COST (MnDOT contract prices as of March 2024): 

● $2010.00 per standard camera 

● $5999.00 per camera-radar hybrid 

● $13345.00 per camera control unit (CCU) supporting 4 cameras/camera-
radar hybrids 

● $2000 per 1000ft of cable 

● $150 per camera bracket 
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Chapter 4:  Research Data 

4.1  Introduction 

This research uses several data sources to evaluate the performance of NIT products. This chapter 

provides an overview of the data sets we use in the research pipeline (Chapter 5). This chapter discusses 

the Traffic Camera, Signal Controller, and Weather Data and summarizes these data sets in the following 

sections. Further details can be found in Appendices D, E, and F. 

4.2  Traffic Camera Data 

The Traffic Camera Data is video data we collect from traffic cameras around the Twin Cities 

Metropolitan Area. MnDOT provides the data which contains the video recordings from traffic cameras 

in *.mp4 format. Of the 39 original cameras from MnDOT, we are able to identify the locations of 31 of 

these cameras. In our approach, we evaluate 6 cameras shown in Figure 4.1. Of these cameras, 4 use 

the Autoscope Vision detection technology, and 2 use the Iteris Vantage Next Detection Technology. We 

choose to exclude the Gridsmart NIT because it is not widely deployed in the study area. We select 

cameras using these detection technologies because they are the most widely used systems within the 

Twin Cities Metropolitan area. Video data is collected from 11/22/2021-05/20/2023 and 08/09/2023-

10/07/2023.  

 

Figure 4.1: The locations of the six cameras we study overlaid on the county map of the Twin Cities Metropolitan 

Area. 

Our manual evaluation of portions of the video data shows that most failures in the NIT systems 

employed by MnDOT are due to bad weather conditions, such as heavy snow/rain, high wind speeds, 
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and low temperatures. We also find that particles of snow, rain, or dirt accumulating on the camera lens 

cause more long-lasting failures. Our approach determines when these types of failures occur using the 

video data. More details on this analysis are provided in Appendix E. 

4.3  Signal Controller Data 

We collect the Signal Controller Data from intersections with cameras MnDOT provides in *.CSV format 

as a downloadable link and download all records from the MnDOT website. The Signal Controller Data 

contains temporal event data on signal changes, maintenance, and traffic passing through the 

intersection. We use this data as our primary means of evaluating the performance of NIT in detecting 

traffic moving through an intersection. We collect Signal Controller Data from the 6 sites in section 4.2 

between 12/20/2022 and 01/10/2023. Each event specifies a Time (Year, Month, Day, Hour, Minute, 

Second, Millisecond), Camera ID, Event Code, and Event Parameter. Event Codes are specific values that 

indicate the type of event based on a pre-defined schema [10]. In our approach, all Event Codes that are 

not 81/82 are excluded because they do not directly correspond to vehicle counts based on detector 

activation. 

The Signal Controller Data provides traffic detection data for both NIT and baseline detectors in the 

intersection. These baseline detectors can be loop detectors, radar detectors, or other types previously 

used by MnDOT. There is no good way of determining which type of baseline detector MnDOT 

previously deployed at a specific location, so we lump all of these devices into a single baseline detector 

category. In our evaluation of NIT performance, we separate these baseline detectors from the NIT 

detectors based on the Event Parameter. The Event Parameter is a numerical value MnDOT assigns to a 

detection volume at an intersection (See Figure 4.2). MnDOT provides a rule that Event Parameters 1-4 

correspond to the baseline detectors, and all other Event Parameters correspond to NIT devices. A more 

detailed analysis of the Signal Controller Data can be found in Appendix E.  

 

Figure 4.2: A snippet from a NIT device showing Event Parameter values. All Detection Volumes (outlined in red) 

in the image have two associated Event Parameter except for the two bottommost and the topmost volumes.  
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4.4  Weather Data 

Weather Data is directly collected from weather stations around Minnesota, and we download the 

records from MDSS (www.webmdss.com), which reports weather data every 5 minutes as a *.CSV 

document. It contains metrics describing temperature, humidity, visibility, etc. We collect Weather Data 

from December 2022 and January 2023 to cover the same period as the Signal Controller Data from 

several weather stations within the Twin Cities Metropolitan Area (See Figure 4.3). The results of both 

the operator interviews (Appendix B) and our analysis of the Video Data (Appendix E) indicate that 

weather conditions are the primary cause of NIT failures. As a result, we choose to make the Weather 

Data a core part of our NIT performance analysis. A more detailed analysis of the Weather Data is 

provided in Appendix E.  

 

 

Figure 4.3: The weather stations within the research study area 

 

http://www.webmdss.com/
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Chapter 5:  Research Approach/Implementation 

5.1  Introduction 

Our research approach is motivated by the results of the interviews with intersection owners/operators 

(Chapter 2) and our data analysis (Chapter 4). The results of the interviews indicate that while analyzing 

overall NIT failures is essential, most of the cost of maintaining NIT comes from routine maintenance 

and cleaning. Both the interviews and our data analysis indicate that snow, rain, and dirt can accumulate 

on camera lenses, rendering them inoperable for long periods. Additionally, the interviews and our data 

analysis indicate that severe weather conditions cause most NIT failures. As a result, our research 

approach focuses primarily on determining the underlying weather conditions that cause different NIT 

devices to fail and under what conditions snow, rain, and dirt tend to accumulate on the lens. Using the 

results of our approach, we provide analysis for failure rates of different detection technologies and 

specifics on what weather conditions primarily contribute to NIT failure. More details on our research 

approach, implementation, and results can be found in Appendix G. 

5.2  Approach 

This study uses the Signal Controller, Weather, and Video Data described in Chapter 4 to detect, 

categorize, and perform a correlation analysis of malfunctions of NIT detection technologies. In Figure 

5.1, we show an overview of the methodology through a flow chart with color-coordinated sections for 

each sub-task in evaluating NIT performance.  

 

 Figure 5.1: The flowchart of our proposed methodology broken down into color-coordinated sections. 
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In the Malfunction Detection section, colored red on the flowchart, we use the Signal Controller Data to 

determine when a NIT device is experiencing a malfunction. We perform a pre-processing step on the 

Signal Controller Data and calculate the number of detected cars passing through an intersection, the 

average amount of time cars were in detection volumes, and the total amount of time cars were in 

detection volumes. We then compare these statistics to historical averages using Pearson Correlation, a 

statistical measure that quantifies the degree and direction of a linear relationship between two 

continuous variables, to obtain anomalous periods in the NIT and baseline detectors. Using the baseline 

detectors as our ground truth, we extract the anomalous periods in the NIT devices that are not 

anomalous in the baseline detectors. Extracting only anomalous behavior in NIT devices ensures that we 

only evaluate conditions that cause NIT devices to fail.  

In the Weather Correlation Analysis section, colored purple on the flowchart, we use the Weather Data 

and the periods when NIT devices fail from the Malfunction Detection section to determine which 

weather conditions caused the NIT failure. This process extracts weather variables highly correlated to 

NIT failures and labels them as a cause of the NIT failure. Through this, we gather statistics on what 

weather conditions cause failures in NIT. 

In the Video Detection section, colored green on the flowchart, we use the Video Data and the periods 

when NIT devices fail from the Malfunction Detection section to determine if there is snow, rain, dirt, 

etc., blocking the camera lens. This method categorizes NIT failures depending on whether there is a 

blockage. We distinguish between NIT failures requiring on-site maintenance and those that do not. 

In the Malfunction Analysis section, colored teal on the flowchart, we use the results from the three 

prior sections to compile statistics on NIT failures. We analyze weather effects on each NIT device in the 

study area and the different malfunction types (defined by the Video Detection section). We also 

compile overall NIT device performance information to determine which technology performs better. 

Finally, we look at which locations experience more NIT failures than others to help guide future NIT 

placement.  

5.3  Research Results 

This study analyzes the effects of weather, different detection technologies, and location on NIT 

performance. In our analysis of the effects of weather on different detection technologies, the study 

finds evidence supporting the claim made in prior research (See Chapter 1.2) that no single NIT product 

outperforms others in all cases. While the Iteris detection technology is more susceptible to 

malfunctions caused by weather conditions, NIT devices with the Iteris detection technology experience 

fewer overall malfunctions than the NIT devices using the Vision detection technology. We also find that 

devices using the Iteris detection technology are more susceptible to failures caused by snow, rain, or 

dirt occluding the lens. These results indicate that cameras using the Iteris detection technology require 

more on-site maintenance to function correctly. In looking at the locations where NIT products are 

employed, we find that some locations experience more NIT failures than others. In particular, the NIT 
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device at the intersection of 81st Ave NE and Highway 65 NE experience the most overall NIT failures. 

The results of our analysis are discussed in more detail in Appendix G. 
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Chapter 6:  Conclusions and Recommendations 

6.1  Conclusions 

This chapter combines the results from the previous chapters and gives recommendations for 

implementing the results and what MnDOT can do to continue evaluating NIT products. We primarily 

use prior work, interviews with the intersection owners/operators in Hennepin County and St. Paul, as 

well as the results from the research approach.  

The initial results from the prior analysis and interviews with intersection owners/operators indicate 

that adverse weather conditions, primarily those with high winds and rain or snow, negatively affect the 

performance of NIT products. In addition, we find that NIT failures caused by these adverse weather 

conditions often require on-site maintenance to resolve as snow, rain, dirt, etc., accumulate on the lens. 

From interviews with intersection operators/owners, on-site maintenance is the primary expense when 

maintaining NIT as most other failures can be resolved off-site. Our research confirms that these 

weather conditions cause many NIT failures and that we can predict them by observing wind speeds and 

reported visibility. The interviews with intersection owners/operators support this conclusion, as 

intersection owners/operators have already taken steps to address this by monitoring and cleaning NIT 

products after storms involving high winds.   

Using the contract cost estimates for recent NIT and loop detector installations and an example “T” 

intersection provided by MnDOT (Figure 6.1), we can compare the installation cost of the different NIT 

products and the loop detectors. For loop detectors, we require 36 6x6 loops, 26 lead-in cables, and 9 

EDI 4 CH detector cards, which sums to $49,820.50 for this intersection, not including extra costs for 

conduits and handholds. For an Autoscope Vision installation, we require 3 cameras and camera 

brackets, 1 camera control unit, and around 1 loop of 1400 ft cable (we estimate ~1000 ft of cable for an 

average intersection), which sums to $34,305.00. For an Iteris Next installation, we require 2 camera-

radar hybrid cameras, 1 standard camera, 3 camera brackets, 1 camera control unit, and 1 loop of 1000 

ft cable, which sums to $29,803.00. Using these figures, we estimate that loop detector installation can 

cost around 1.5 times the amount of an Autoscope Vision or Iteris Next installation. Moreover, Iteris 

Next generally costs less than an Autoscope Vision installation with a $916 difference between the Iteris 

Next hybrid camera and the Autoscope Vision camera in this example. 

When comparing NIT devices, our research supports the results in prior work that no one NIT system 

outperforms all others in all weather conditions. However, the performance of different NIT products 

diverges when subjected to different weather conditions and factors like snow, rain, dirt, etc. contribute 

to lens blockage on some NIT products more than others. In addition, we find that specific locations 

experienced more NIT failures than others.  
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Figure 6.1:  An example intersection for NIT and loop detector installation (a) the top figure depicts an example 

intersection installed by MnDOT (b) the bottom figure depicts the lead-in rows to (a). 
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6.2  Recommendations 

From the interviews with intersection owners/operators, we know that glare from external light sources 

causes many NIT failures. From operator interviews, we recommend angling cameras at intersections to 

reduce this by adjusting the angle below the horizon line and installing glare shields on the sides of the 

camera to reduce glare. We also note that a significant glare source can come from the sun reflecting off 

snow when a large amount accumulates on the road. As such, we recommend installing filters on 

affected cameras to reduce glare and continue making periodic adjustments to camera positioning when 

necessary. Moreover, both Hennepin County and St. Paul signal operators employ a tactic to put all NIT 

devices on a central monitoring system. Adding devices to a remote access network helps operators 

diagnose failures remotely and reduces the need for on-site maintenance, potentially reducing costs for 

operators. This does not take into account potential externalities from the cost to the traveling public. 

Employing a central monitoring system could also reduce the need for on-site maintenance and allow 

operators to diagnose problems in NIT devices more quickly, reducing overall costs.  

The results of our research show that while NIT products tend to have similar overall performance, 

under specific weather conditions performance diverges. Using the results from our research and the 

prior reports we compile our recommendations in the form of a flow chart (Figure 6.2). We recommend 

considering local weather conditions and the relative performance of different NIT products when 

selecting a NIT product for an intersection. Furthermore, we provide examples of accessories that can 

be installed on the camera to prevent failures as well as maintenance schedules and windows that 

operators should consider when reviewing intersections. We recommend routinely checking the NIT 

devices through the central monitoring system after severe storms, especially those involving low 

visibility and high wind speeds. Furthermore, we recommend installing heat shields on all NIT devices to 

reduce the need for on-site maintenance to clear snow and rain.  
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Figure 6.2: Recommendations for installation and maintenance of intersections. Users are asked to consider 

local weather features before selecting NIT devices and installing proper accessories to help prevent failures. We 

also include recommended maintenance schedules and windows. 

6.3  Future Work 

In summary, performance evaluation of different detection technologies for signalized intersections is 

important, especially for NIT devices because they rely on what a camera can visually see. Any time a 

camera is used in a NIT device (e.g., for vehicle detection), there will be affects and limitations to the 

continual successful operation, maintenance, and costs to the signal system. In the future, we would like 

to conduct a more in-depth analysis of sources of glare-reducing NIT performance. Our research shows 

that glare is a factor in causing NIT failures, but we do not differentiate between glare from the sun, 

glare caused by headlights, and glare caused by reflections from the road. We would also like to conduct 

further studies on a wider variety of NIT products to compare performance and cost. Finally, we would 

like to perform a more in-depth analysis of how intersection geometry and geographical context affect 

camera performance. We find a high discrepancy between the number of NIT failures at different 

locations, and determining the underlying cause of this would allow better deployment of NIT devices to 

reduce overall costs and improve efficiency.  
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Performance Evaluation of Different Detection 

Technologies for Signalized Intersections in Minnesota 

MnDOT Contract No. 1036342 Work Order No. 18 

Task 1: Initial Memorandum on Research Benefits and Implementation Steps 

Intersection control can be pre-timed or vehicle actuated. Modern controllers implement natively only 

actuated control with pre-timed implemented as the special case of actuated, termed vehicle Recall. 

Actuated signals respond to the traffic present at the intersection, so that the pattern of the signal (the 

length and order phases) depends on the traffic and can be different at every cycle. In all versions of 

actuated control, the cornerstone of the system is vehicle detection. MnDOT and many local MN 

agencies have traditionally used embedded loop detectors in the pavement for detecting vehicles. 

Although the performance of a well-placed loop detector has yet to be matched by any other method, 

changes in the vehicle fleet (higher use of non-ferrous material) as well as increased need for more 

comprehensive detection (vulnerable road users, all lanes individual advance and stop line detection) 

has resulted in the increased use of Non-Intrusive detection Technologies (NIT). As stated in the NS, 

testing of these newer technologies on MN intersections has not been conducted in a comprehensive 

way. Although there are studies evaluating the performance of NIT detection, all have been racing 

against obsolescence given the rapid developments in the market, and more importantly all of them 

have focused in the comparative evaluation of different detection technologies. Unfortunately, there 

has been very few studies identifying the long term true costs of operating and maintaining such 

intersection control systems. The goal of this project is to provide guidance to MnDOT and LRRB 

members on selecting the most appropriate technology for a given location as well as on the expertise, 

effort, and material cost involved in maintaining each of these systems year round in Minnesota. 

Achieving this goal involves two parallel but separate efforts. 

The first effort aims in synthesizing national and local experience procuring, deploying, and maintaining 

NIT for signal operations. On the national level, the project will establish a baseline on the currently 

available detection technologies and the products in the market that employ them as well as compose a 

synthesis of current research on the performance of NITs. On the local level, a survey of signal operation 

and maintenance offices covering the entire state of Minnesota and neighboring states, on their use and 

experiences with NITs for signal control, will be followed by a series of interviews to collect practitioner 

experiences in operating and maintaining the different detection products. 

The second effort involves a year round observation and recording of performance of selected real 

deployments of all major products used in Minnesota. Sites will be selected based on varying geometry 

and demand characteristics. At these sites, field or remotely placed hardware will record all control 

signals (actuations and phase changes) coming in and out of the controller while separately recording of 

the detection system available raw data and/or video from additional Minnesota Traffic Observatory 
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(MTO) cameras. Where possible already deployed infrastructure will be used. Analysis of these records 

will produce year round records of detection system errors affecting actuated control such as False Calls, 

Missed Calls, Stuck-on Calls, and Dropped Calls. The produced event records will be correlated with 

weather measurements of wind and temperature, as well as environmental conditions like snow, rain, 

pavement condition, time of day (lighting), etc. 

TABLE 1. EXPECTED RESEARCH BENEFITS 

Benefit Category Are the benefits 

quantifiable (Yes/No) 

How these key benefits will be quantified? 

Climate Change & 

Environment 

Yes Cumulative time vehicles spent idling on red due to 

NIT miss detection. Separately for main and side 

road approaches. 

Improved Safety Yes % reduction of time period intersection is placed on 

all phase recall. 

% of time bad detection resulted in insufficient 

yellow clearance interval. 

Operation and 

Maintenance 

Yes Newer detection technology for traffic signals may 

perform better at same or reduced costs. 

Determine which technology has the lowest long 

term costs for the life of the signal system. 

Benefits 

The expected benefits from this research encompass several categories. Table 1 provides an overview of 

these benefits. 

The cost of the vehicle detection instrumentation for a fully actuated control can go as high as $40,000 

per intersection and although manufacturers always claim that their systems require minimum 

maintenance, as pointed by the NS champions, several of the currently operational intersections owned 

by MnDOT had to be put on Recall mode last winter due to failures of the detection system. Such 

events, not only represent safety hazards until they are discovered, they can generate long delays to 

road users and dramatically increase maintenance costs. The proposed project will identify the most 

common forms of failure, develop and propose early detection of performance reductions, as well as 

provide guidelines on the required periodic maintenance and replacement (possibly half-life of entire 

system) actions that can minimize signal control down times. These will result in benefits from better 
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estimating life cycle costs leading to higher return on investment as well as minimize road user costs in 

the form of traffic delays and crashes. 

Implementation 

In addition to the technology reports and synthesis documents delivered during the project, the final 

goal is to provide guidance to MnDOT and LRRB members, not only on selecting the most appropriate 

technology for a given location, but also on the expected expertise, effort, and cost involved in 

maintaining each of these systems year round in Minnesota for the life of the signal system. The final 

product delivered will be a decision tool to guide signal design by MnDOT and other public works 

entities in Minnesota. Although the precise form this decision tool will have is not yet clear, on request 

of the TAP, it will include regular loop detectors as a baseline for comparison. Information regarding life 

cycle costs of loop installations will be based on information collected during the interviews as well as 

from relevant literature. 
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Introduction 

The goal of Task 2 was to collect and compile real world experience in working and maintaining NIT 

vehicle detection installations. Towards that goal we have communicated and attempted to survey all 

major NIT owners/operators in Minnesota. Specifically, we contacted the following organizations: 

1. Hennepin County 

2. Washington County 

3. Dakota County 

4. City of Minneapolis 

5. City of St. Paul 

6. All MnDOT District offices 

Indirectly we have also collected information from MnDOT Metro since the information sought was 

identified along with project liaisons in the office of signal operations. Unfortunately, a minority of the 

aforementioned entities replied to our call for information. Specifically, from the ones that indeed own 

NIT detection systems, only Hennepin County and the City of St Paul responded back. Therefore, this 

report is based on the information received them and from MnDOT Metro. 

In this task report we will first describe the survey content and information sought during the in-person 

interviews, followed by a compilation of the information collected. 

Developing the Survey 

As already mentioned the goal of the interviews will be to collect practitioner experiences in operating 

and maintaining the different NIT based detection products. The following is a copy of the email send to 

the entities mentioned in the previous section. 

As part of a MnDOT-sponsored project, the University of Minnesota is investigating the 

performance of different non-intrusive vehicle detection technologies for signalized intersection control. 

The main objective of the project is to collect information regarding the full life cycle cost of such systems 

to inform current and future signal owners. The project has selected a large number of MnDOT operated 

signals utilizing such detection systems and is conducting a year round observation of their performance. 

On a separate task we would like to meet and discuss with owners, operators, and maintainers of 

such vehicle detection systems around the state. The following is an incomplete list of the types of 

information we seek to accumulate. 

● Frequency of down-times per intersection/detection system  
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● How do you monitor this? 

● Frequency of system operational parameter adjustment in order to maintain desired 

performance. 

● Average effort and/or estimated annual expenditures to keep the system running  

o Cleaning, upgrading, adjusting cameras, etc. 

● Effort in monitoring, identifying that something is wrong, and taking action. 

● Need for stockpiling of replacement equipment  

o What components fail more often (per OEM) 

o Labor of maintenance is a cost even if the replacement part is free. 

● Firmware upgrades 

o Free for life, requiring subscription, or a maintenance plan? 

● Helpdesk service cost?  

o  On-site help available? Cost? 

● Learning curve per system. 

o Who’s learning curve? 

 ▪ Technician, Engineer, Operator? 

● Responsiveness of system providers. 

You are receiving this email because you have been identified by the project Technical Advisory 

Panel (TAP) as a first point of contact because you can provide the relevant information and/or you can 

forward this email request to other people in your organization who can benefit this research. We would 

appreciate if you can assist us in organizing one or more information gathering meetings with the relevant 

persons in your organization. 

If you have any questions regarding the project, please feel free to communicate with me (info at 

the end of the message) or the MnDOT technical liaison Mr. Steven Misgen. 

Prior to the interviews, a more extended questionnaire was communicated to assist in the conversation. 

This questionnaire was the following: 

Introduction to the project 

Although the performance of a well-placed loop detector has yet to be matched by any other method, 

changes in the vehicle fleet (higher use of non-ferrous material) as well as increased need for more 

comprehensive detection (vulnerable road users, all lanes individual advance and stop line detection) has 

resulted in the increased use of Non-Intrusive detection Technologies (NIT). Video is less than half of the 

price of a loop installation. 
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There has been very few studies identifying the true costs of operating and maintaining such 

intersection control systems. This proposal aims in providing guidance to MnDOT and LRRB members on 

selecting the most appropriate technology for a given location as well as on the expertise, effort, and 

material cost involved in maintaining each of these systems year round in Minnesota. 

The goal of the interviews is to collect practitioner experiences in operating and maintaining the 

different detection products. 

Trying to understand and estimate the Full Life Cycle Costs. 

Discussion Questions: 

1. Approximately how many signalized intersections do you own and/or operate? 

2. How many of those utilize vehicle detection? 
a. How many use NITs? 

3. What prompted you to transition to NITs? 
a. How long have you been using NITs? 

4. Do you use one type of product or manufacturer or have several different ones? 
a. Any products that involve subscription? 

5. (Multiple Systems or Single OEM) 
a. What is the Learning curve per system? 

i. Who’s job is to learn the system? Technician, Engineer, Operator? 
ii. How much of this effort do you outsource? 
iii. Is a similar cost involved in loop installation and operation? 

6. How often do you inspect/adjust the system operational parameter to maintain desired 

performance? 
7. What is the effort in monitoring, identifying that something is wrong, and taking action? 
8. On average what is the frequency of down-times per intersection/detection system 

a. How do you monitor this? 
9. Average effort and/or estimated annual expenditures to keep the system running 

a. Cleaning, upgrading, adjusting cameras, etc. 
10. Do you see a need to stockpile replacement equipment/parts? 

a. What components fail more often (per OEM)? 
b. Labor of maintenance is a cost even if the replacement part is free. 

11. Firmware upgrades 
a. Free for life, requiring subscription, or a maintenance plan? 

12. Helpdesk service cost? 
a. On-site help available? Cost? 

13. Responsiveness of system providers. 
14. What is the construction/reconstruction related differences between loops and NIT? 

a. Loops are often changed with someone else paying for the cost (road surface 

maintenance project). Maintenance projects now drop the cost to the signal operator 

unless signal poles are affected. 
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Interview with Hennepin County 

The interview with Hennepin County took place on June 17th 2022 at the traffic operations center in 

Medina, MN. Ben Hao, the director of signal operations organized the meeting and invited several other 

county employees from the signals and maintenance departments. Prior to the meeting, Mr Hao had 

solicited the input from all relevant stakeholders. The following section is composed mainly by the 

minutes of the meeting as provided by Mr Hao. 

1. Hennepin County operates 450 signals  

o All signals are semi or fully actuated. 

o Vehicle detection utilizes video NITs. No loops remain in use. 

2. The products used through the system are primarily Vision, Terra, and Encore by Econolite 

o Currently the group is testing one Iteris Next and one GridSmart products. 

3. Why moved from loops to video? 

o Video is cheaper to maintain due to mill and overlay (from ops or construction 

budget). 

o The cost for maintenance is due to the cause of the replacement.  

o $10K to replace one loop, resulting to $200K for an intersection  

o Video is easy and flexible to configure the zones 

4. Tech support is free by TCC. 

o When asked regarding preferential treatment to big customers, the group replied that 

to their knowledge TCC does not charge for tech support regardless of the size of the 

system. 

5. What should users know to move from loops to video 

o Vision: TCC provides all training and helps with turn-ons  

o Contrast failures are by nature the limitations for video so good understanding of the 

camera view in relation to external light sources (sun, luminaires, etc.) is important. 

o Field techs need to have developed enough experience working with each system. This 

is the reason why Hennepin avoids having a large variety of products. 

o Connecting the intersections to the network allows access and management of the 

system. The majority of issues that arise can be worked on remotely by changing the 

zone configuration. 

6. How do NIT systems cope with Minnesota weather? 

o Winter impacts the lens clarity. 

o Camera housing with heated lens is absolutely necessary.  

o Snowstorms cause failures of detection due to contrast failures. 

o Sun glare also causes contrast failure. It is important to take the horizon into 

consideration when install the camera. 

o Usual issues involve inappropriately installed Sun shields. 
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Glare from the road can be also an issue. There can be a difference between concrete and asphalt 

pavements and wet surface may have more impact than dry pavement. 

7. Frequency of down-times per intersection/detection system 

-      How do you monitor this? 

- Complete system failures are extremely rare. 

- The ATMS software (MaxView2) provides alarms for detection malfunction on a daily 

basis. 

▪ In rare cases issue detection comes from citizen comments. 

- Would like to have some external auditing application monitoring the systems. The 

county is currently considering acquiring such applications. Currix. TraffOps (ATSPM and 

AI). 

o Effort in monitoring, identifying that something is wrong, and taking action. 

- Adjust detection configuration, cleaning, cycle the power. 

- Put min recall for contrast failures 

- ATMS software would generate alarms for contrast failures 

- Loops can also have intermittent failures 

8. Frequency of system operational parameter adjustment in order to maintain desired 

performance. 

- Dependent on when the detectors are down, generate false calls, or have contrast 

failures. 

- Most issues are dealt by adjusting zoom, scope, and virtual detection zone dimensions. 

o Latest Visions firmware allows for user adjustment of the contrast failure 

threshold. 

9. Average effort and/or estimated annual expenditures to keep the system running  

- Cleaning, upgrading, adjusting cameras, etc. 

- Annual cleaning takes several months to complete. 

▪ One staff member does it for three months 

▪ Estimated cost of $10K for cleaning/year for all 450 intersections. 

- Upgrading the firmware is easy and can be done remotely. Can do multiple cameras at 

one time. 

10. Need for stockpiling of replacement equipment  

- Not a lot of inventory is necessary. 

- Once or twice per year a camera may be hit by lightning. 

                                                           
2 Note that MaxView is now Kinetic® Signals as of April 2024. 
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o Only once lighting fried all interface cards that connect to the cabinet. 

- Vision systems installed in 2017. It has been 5 years and no hardware issues have been 

reported. Very reliable. 

11. Firmware upgrades   

-   Free for life. 

 - Do not require subscription 

12. Helpdesk service cost? 

 - TCC is under county contract 

13. Learning curve per system. 

- Switching from Terra to Vision is easy. It is user friendly. 

- Power Over Ethernet system (POE) connects camera to cabinet Vision in the field. 

- Tech can access and configure in the field with the one cable. 

- Initial install: County staff do it. 

o TCC may provide tech support if needed. 

o Contractor may pay TCC to do the initial setup for construction projects. 

-     County does all the maintenance.  

-     Signal shop technicians and TMC engineers  

-     TCC provides training 

14. Responsiveness of system providers. 

- TCC is responsive. 

- Comes out in the field the same day or the next day. 

Interview with City of St. Paul 

The interview with the City of St Paul took place on October 17th 2022. Initially Mr Mike Klobucar, 

director of the Traffic & Lighting Division in the Department of Public Works had solicited answers to 

the introductory questions communicated with the original survey email. The follow up meeting over 

teleconference helped to drill down to additional details. The following is a compilation from both 

information sources. 

1. The City of St Paul operates 390 signals. 

o Approximately 90% of these signals are actuated. 
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o Approximately 70% of the signals still use loops for vehicle detection while a couple of 

locations use Wavetronix radar. 

o Current plan is to move towards video by replacing loops with video when road is 

resurfaced. 

o Main reason for switching to video is to adequately cover the bike lanes. Loops have not 

been successful in that regard. 

2. The video based NIT detection products use are mainly Vision with some older Terra by Econolite. 

o There are approximately 4 sites that currently use GridSmart. 

3. Frequency of down-times per intersection/detection system: 

o Very minimal down times. Main cause of down time due to storms such as lighting, strong 

winds, heavy snow fall, knocked down poles due to accidents and camera failures.  

o How do you monitor this? 

▪ City monitors signal detection systems by setting up alerts through the central 

signal system (Centracs). They are able to review the individual alert, troubleshoot 

and/or make necessary adjustments to resolve the issue. 

▪ For unresolved issues and off network detection systems, a request is submitted for 

the city electrician to investigate and perform field troubleshooting. 

4. Frequency of system operational parameter adjustment in order to maintain desired performance. 

o As needed to maintain optimal performance when alerts are reported by Centracs. 

o There is a review of all on network detection systems monthly to make sure desired 

performance is met. 

o For off network detection systems when issues are reported they perform field trouble 

shooting. 

5. Average effort and/or estimated annual expenditures to keep the system running 

o  Upgrades & adjustments are fairly low effort. City tries to proactively monitor. 

o Once a year all cameras are cleaned with additional rare cases after some major winter 

storms. 

o All systems are reviewed every three weeks as well as after major events involving strong 

winds. 

6. Effort in monitoring, identifying that something is wrong, and taking action. 

o Review the detector alert, observe and investigate if there is an actual problem when the 

alert is reported by Centracs and/or citizen. If a problem is discovered, trouble shoot, make 

adjustments, and/or restarting detector system. If cannot be resolved, inform and have 

electrician investigate in the field and repair/replace equipment as needed. 

7. Need for stockpiling of replacement equipment  

o There haven’t been a lot of failures. A couple of detector cards failed, and a few issues 

involved manufacturer defect. 

o City does its own maintenance. 
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8. Firmware upgrades  

o Free firmware upgrade when available and/or to resolve issues for purchased systems. 

9. Helpdesk service cost? 

o On-site help available? Cost? Depends on the vendor. Typically no cost if all other 

troubleshooting options are exhausted. 

10. Learning curve per system. 

o Technicians/operators probably have the largest learning curve, with the need to use 

multiple applications if multiple camera systems are in use. 

o City’s electricians don’t seem to have issues with installation in most cases. 

11. Responsiveness of system providers. 

o Same day or the day after reported to providers. Provides tech support in resolving the 

problem/issue and assist in other trouble shooting methods. 

12. General comments: 

o Most important reason for switching to video based detection is to cover bike lanes. 

o The Green LRT line is where the bulk of the video based detection is. System is 8 years old 

and has encountered very few issues. 

o In difference to MnDOT and the counties, the city intersections are much smaller in size 

resulting in smaller cost difference between NIT and loops. 

o Radar has been used in cases where video could not be used due to site limitations. 

o It is wise to avoid dealing with multiple products. Goal for the City is to eventually switch to 

only one product, if possible.
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Introduction  

Vehicle detection began in the late 1920’s in Baltimore, Maryland. A railroad signal engineer named 

Charles Adler, Jr. developed a horn-activated sensor that consisted of a microphone in a small box 

mounted to a nearby pole. It was installed at a Baltimore intersection in 1928 and enabled operation 

of the first semi-actuated signal. Around the same time, a pressure-sensitive pavement device was 

introduced that proved to function better and was more popular. The sensor used two metal plates 

that acted as contacts when pushed together under the weight of a vehicle. The device was the 

primary means of vehicle detection at actuated intersections for more than 30 years (1)  

Mechanical problems with the plate sensor led to the introduction of electro-pneumatic sensors. 

Although these sensors were used for a short time, they were costly to install, capable only of passage 

(motion) detection, and had poor counting accuracy. By the early 1960’s, Inductive Loop Detection 

(ILD) systems were being implemented for traffic signal operations and have since become widely 

used vehicle detection technology. However, problems such as the cost of installation and 

maintenance and the need for closures during maintenance created the demand for alternative 

systems (1).  

In the late 1980’s, video imaging detection systems appeared in United States (US) and international 

markets, warranting the need for research to determine the viability as a replacement to ILDs. In 1990, 

California Polytechnic State University (Cal Poly) began testing 10 video detection systems that were 

either prototypes or commercially available in the US. Since the 1990’s, several more NIT detection 

system types have been introduced including microwave radar, infrared sensors, and hybrid systems, 

warranting the need for extensive research (2,3).  

This project focuses only on Non-Intrusive Technologies (NIT) for the detection of vehicles, specifically 

for the operation of actuated signals intersection control. Further on, following current guidance from 

the Technical Advisory Panel, given that the main focus of the research is the long term performance 

of NIT detection under various environmental conditions, the majority of the effort is spent in the 

discussion of video imaging detection system. Regardless, other NITs are mentioned in this document 

for generality and comparisons.  

The first part of this report covers the basics of vehicle detection and discusses the different varieties 

of sensor families. It ends with a short literature review on past sensor evaluation studies. The second 

part of the document presents a synthesis of mostly video based vehicle detection systems from the 

manufacturers that have the greatest market share in the USA.  

Basics of Non-Intrusive Technologies for Vehicle 

Detection (NIT)  
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Over the years, a large number of sensors have been developed and commercialized. Today still, the 

inductive-loop detector is, by far, the most widely used sensor in modern traffic control systems. 

These and sensors like magnetometers and magnetic sensors are all belonging to the intrusive 

technologies, or in-pavement category. NIT or Over the Pavement sensor category includes video 

image processors, microwave and laser radar sensors, ultrasonic, acoustic, and passive infrared 

sensors a lot of which are produced commercially and used for various traffic management 

applications. From these Video, Radar, and Thermal are currently the dominant products available in 

the market. As it can be seen from the following sections, they share a lot of operating principles.  

Radar, Laser, and LiDAR Detection  

Radar, Laser, and LiDAR detectors transmit energy toward an area of roadway from an antenna/light 

emmitter that is mounted overhead. When a vehicle passes through the beam of energy, a portion of 

the energy is reflected back to the antenna and detection is made. These detectors can sense the 

presence of stationary vehicles and multiple zones through their range finding ability (4). This concept 

is illustrated in the following figure (5).  

  

In more detail, there are two types of these detectors, the time-of-flight and the Doppler principle 

based. Their differences are in many ways critical to the application. Radar Time-of-Flight (TOF) 

sensors share the same principle with Laser/LiDAR sensors in that they base their detection to the 

measurement of the signal travel time between the antenna and the target. Essentially, they measure 

distances. Similar “echos” from consecutive scanning intervals that produce different distances are 

identified as targets and their presence and/or track is recorded. If information is given to the sensor 

regarding the echo image of an empty road, then even stopped targets can be detected. This is the 

major difference with sensors that exploit the Doppler principle. These sensors do not send out pulses 

of microwaves or light but a continuous microwave signal of known frequency. The Doppler principle 

indicates that if a wave is reflected over a moving target, the return wave will have its frequency 

shifted by an amount that depends on the speed of the target. Doppler radar sensors are much 

cheaper to develop and can cover much greater fields of view but they can only detect moving objects. 
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In the case of a vehicle, if the vehicle stops moving then it becomes invisible to the sensor until such 

time as it starts moving again. Most of the Commercially available sensors in the market cope with this 

huge limitation through post-processing algorithms and heuristics which greatly affect the overall 

measurement accuracy.  

Passive Infrared and Thermal Image Sensors  

Passive infrared sensors (PIS) have been available to the traffic industry for some time and are 

currently being marketed by some companies as thermal sensors. A PIS measures energy that is 

emitted from the vehicles, road surfaces, and other objects within view that emit no energy of their 

own. As the following figure (5) shows, when a vehicle enters the sensor’s field of view, it generates a 

signal that is proportional to the product of the difference in emissivity (ε) between the road and 

vehicle, and the difference between the absolute temperature of the road surface (TR) and the 

temperature of the sky (Tsky) (5).  

Thermal sensors have the greatest similarity with video image sensors because in the majority of 

implementations they produce an image akin to a black&white video which is then processed in a 

similar way. For traffic applications, the major advantage of thermal sensors is that since they do not 

use visible light to produce the image, they are not affected as much from environmental conditions 

that limit visibility or other light related artifacts like shadows and glare. Naturally, extremely low or 

high temperatures that reduce the contrast of the image are a problem.  

  

Video Image Processing Sensors  

Video cameras were introduced to traffic management for roadway surveillance because of their 

ability to transmit closed circuit television imagery to a human operator for interpretation. Present-

day traffic management applications use video image processing to automatically analyze the scene of 
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interest and extract information for traffic surveillance and control. A video image processor (VIP) 

system (sometimes referred to as a machine vision processor) typically consists of one or more 

cameras, a microprocessorbased computer for digitizing and processing the imagery, and software for 

interpreting the images and converting them into traffic flow data.  

Principles of Operation  

Video image processor systems detect vehicles by analyzing the imagery from a traffic scene to 

determine changes between successive frames. The image processing algorithms that analyze black 

and white imagery examine the variation of gray levels in groups of pixels contained in the video 

frames. The algorithms are designed to remove gray level variations in the image background caused 

by weather conditions, shadows, and daytime or nighttime artifacts and retain objects identified as 

automobiles, trucks, motorcycles, bicycles, and recently pedestrians. Traffic flow parameters are 

calculated by analyzing successive video frames. Color imagery can also be exploited to obtain traffic 

flow data. The improved resolution of color cameras and their ability to operate at low light levels is 

making this approach more viable.  

Three types of data extraction approaches are available to VIPs: tripline, closed-loop tracking, and 

object detection and classification based tracking. Tripline systems allow the user to define a limited, 

but usually sufficient number of detection zones in the field of view of the video camera. When a 

vehicle crosses one of these zones, it is identified by noting changes in the pixels caused by the vehicle 

relative to the roadway in the absence of a vehicle. Surface-based and grid-based analyses are utilized 

to detect vehicles in tripline VIPs. The surface-based approach identifies edge features, while the grid 

based classifies squares on a fixed grid as containing moving vehicles, stopped vehicles, or no vehicles. 

Tripline systems estimate vehicle speed by measuring the time it takes an identified vehicle to travel a 

detection zone of known length. The speed is found as the length divided by the travel time (1,6).  

The advent of the VIP tracking approaches has been facilitated by low-cost, high throughput 

microprocessors. Closed-loop tracking systems are an extension of the tripline approach that permits 

vehicle detection along larger roadway sections. The closed-loop systems track vehicles continuously 

through the field of view of the camera. Multiple detections of the vehicle along a track are used to 

validate the detection. Once validated, the vehicle is counted and its speed is updated by the tracking 

algorithm (7). These tracking systems may provide additional traffic flow data such as lane-to-lane 

vehicle movements. Therefore, they have the potential to transmit information to roadside displays 

and radios to alert drivers to erratic behavior that can lead to an incident.  

The latest development in VIP is the object detection and classification tracking. These new family of 

methods utilize neural networks and AI techniques to analyze the entire image of each video frame 

and identify or “label” all known objects. Although such systems have been used for vehicle detection 

for some time now, their cost, due to hardware requirements, didn’t allow them to capture the 

market. In the last five years, great advances in the AI and machine learning paired with a substantial 

reduction in the cost of computing power, have been increasing the popularity of such systems. One 
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major advantage of these new sensors is that they can also detect pedestrians and other road users 

that do not always move in well defined regions in the image.   

A more involved description of vehicle tracking methods suitable for VIPs can be found in Kanhere, 

N.K., et al., 2006 (8). A summary of these tracking approaches appears below.   

• Blob or region based tracking  

– Generates a background model for the scene  

– For each input image frame, algorithms analyze the absolute difference between the input 

image and the background image to extract foreground blobs that correspond to the 

vehicles – Vehicle tracking possible at region level and vehicle level  

– Difficulties reported handling shadows, occlusions, and large vehicles, all of which cause 

multiple vehicles to appear as a single vehicle  

• Active contour based tracking  

– Tracks the outside contour or boundary of an object  

– Contour initialized using a background difference image and tracked using intensity and 

motion boundaries  

– Occlusions are detected using depth-ordered regions associated with the objects  

• Model based tracking  

– Matches detected objects with pre-identified 3-D vehicle models  

– Emphasizes recovery of trajectories for a small number of vehicles with high accuracy  

– Some model-based approaches assume an aerial view of the scene, virtually eliminating all 

occlusions, and match wire-frame models of vehicles to edges detected in the image  

• Feature based tracking  

– Tracks sub-features in the object, represented as points, rather than tracking the entire 

object  

– Useful when vehicles are partially occluded  

– Tracks multiple objects by identifying groups of features based on similarity criteria, which 

are tracked over time  

• Color based tracking  

– Color signatures (chromatic information) are used to identify and track objects  

– Vehicle detections are associated with each other by combining chromatic information with 

driver behavior characteristics and arrival likelihood  

• Object based tracking  

– Vehicle and other road user detection treated as a classical pattern classification problem 

using AI and machine learning algorithms.  
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Video-Radar Hybrid Systems  

Hybrid video-radar detection systems combine video and microwave radar detection technologies and 

merge information to produce detection data. The fusion of multi-sensor data can provide advantages 

over single sensor systems. An example of a benefit of hybrid detection exists with a moving object, 

such as an airplane, that is observed by both radar and infrared imaging. Radar has the ability to 

accurately determine the airplane’s range but is unable to determine its angular direction. In contrast, 

the infrared sensor is able to accurately determine angular direction but not range. If data fusion from 

both sensors is properly associated, the multi-sensor system could provide improved accuracy in the 

determination of location over an independent sensor system. Hybrid systems not only employ the 

use of two or more sensors, but also require a data fusion system or algorithm that is able to analyze 

and process the multisensory data.  

The merging of video and radar information has been widely used in intelligent vehicle systems, but 

mostly within lane recognition, collision avoidance, and adaptive cruise control applications. There are 

currently very few video-radar hybrid systems available on the commercial market. To date, no 

systematic studies involving hybrid detection systems in intersection applications are available and the 

majority of research has been focused on development and analysis of algorithms for data fusion.   

It is also important to note that in several of the commercially available systems the implementation 

involves only an extremely rudimentary data fusion. Based on anecdotal information (system 

manufacturers don’t divulge such details), we can identify two ways this simplistic data fusion has 

been accomplished. One such implementation has each sensor type operating individually in parallel 

and involves heuristics during post-processing handle target identification disagreements. A second 

implementation, involves the separation of the covered field of view in regions based on distance from 

the sensor. In these cases the video based sensor has been usually covering the area near the stop line 

with the radar sensor handling the farther upstream parts of the approach. As can be seen later in this 

document, there are currently very few available hybrid systems in the market because of many 

discontinued products.  

The following table is taken in its entirety from the FHWA Traffic Detector Handbook Vol 1 and 

summarizes the strengths and weaknesses of the various sensor technologies. Some of the stated 

information are not globally accepted as facts.    
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Summary of Earlier NIT Evaluation Studies  

The following sections present a very short summary discussion of previous research related to NIT 

vehicle detection, including video-based, infrared, and video-radar hybrid systems. It is important to 

note that by default all such studies have been extremely limited in their utility to practitioners. This is 

because the VID manufacturers’ rapid claims in following years regarding improved detection due to 

for example, shadow processing or compensation for camera movement, among others, result in 

these evaluations not being able to claim that they represent the performance of VID installations 

currently in use, but rather the systems available at the time.   

In general, previous research involving video-based intersection detection is moderately plentiful and 

describes testing protocols and evaluation metrics that can be adapted to include other system types 

(919). The majority of this research was based on product evaluation and compares the accuracy of a 

system or systems to the accuracy of loop detectors. Many agencies have been employing video 

detection at intersections for well over two decades, and some states, such as Texas, have developed 

manuals for implementation (20). Cal Poly’s 1990 evaluation of 10 video-based detection systems 

yielded vehicle count and speed errors of less than 20% over a mix of low, moderate, and high traffic 

densities. However, transitional light conditions, occlusion, and slow-moving, high-density traffic 

conditions reduced the accuracy of these systems (2). Video detection research over the past two 

decades has indicated that lighting conditions are the main cause of detection errors and that night 

periods are usually characterized as having more problems due to headlight glare (9, 17, 21). Daytime 

sun position can have an impact on detector operation as well. The sun can create stationary or 

moving shadows that can confuse the detector, and glare can reduce camera visibility (9).  

In discussing specific commercially available systems, all of which have since been discontinued, an 

evaluation of the Vantage Video Traffic Detection System (VTDS) at three intersections was presented 

by MacCarley (7) in 1998. Performance was evaluated under twelve conditions, including 

combinations of weather, time of day, traffic volume and electromagnetic interference. Results were 

based on 15-minute datasets and showed good performance under ideal lighting and light traffic 

conditions. Performance degradation due to shadows and low lighting conditions, among others, was 

also found. Overall, video detection systems were considered not reliable for general signal actuation.   

Later in 2001, Minnesota DOT and SRF Consulting Group (4) also evaluated the performance of VD 

systems at intersections. In this case Peek Video Trak 900, Autoscope 2004, EVA 2000 and TraffiCam 

systems were installed at different mounting locations and heights. Similar to the MacCarley study, 

factors such as shadows (both stationary and moving) and wind were also found to affect VD 

performance. Also in 2001, Grenard, Bullock and Tarko (12) evaluated Econolite Autoscope and Peek 

VideoTrak-905 for their performance at a signalized intersection. Results from overcast, night rain, and 

partly sunny conditions from three days were presented. It was concluded that night-time detection 
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was a concern and VID systems should not be used for dilemma zone protection. More recently, a 

study by Rhodes et al (9) that followed the 2001 study by Grenard, Bullock and Tarko (12), indicated 

significantly more false and missed detections using VID systems than inductive loop detectors. The 

study installed three systems next to each other: Autoscope (version 8.10), Peek UniTrak (version 2), 

and Iteris Vantage (Camera CAM-RZ3). Results from two full days of data were analyzed, finding that 

all the three VID systems had moderate to high degree of missed and false calls and none was superior 

to the others. An additional publication by Rhodes et al (10) evaluated the stochastic variation of 

activation/deactivation times between day and night condition using data from one day, finding earlier 

detections at night due to headlight reflection in the pavement.   

It is very difficult to compare the performance of two or more VID systems at installations located at 

different intersections or at different points in time. Setups using side-by side comparisons can clearly 

provide an advantage over other installations as the VID systems are processing the same images 

using their own camera. Moreover, data used in previous studies seem rather limited, being very 

difficult to control or to account for specific factors that affect VID performance. In studies of McCarley 

and Grenard a real-time side-by-side comparison of the VID systems was not performed. In Rhodes 

and MnDOT 2002 studies a real-time side-by-side comparison of the VID systems was performed, but 

limited datasets were used in these two studies (2 days in Rhodes and 1 day in McCarley).   

The most recent such study (3) was performed by the National Institute for Advanced Transportation 

Technology (NIATT) at the University of Idaho with funding from Idaho Transportation Department. In 

that study, field-testing was conducted to evaluate nine alternative vehicle detection systems (four 

video, two radar, one thermal, and two hybrid) at the stop bar zone of a signalized intersection under 

six conditions: (a) daytime, (b) nighttime, (c) favorable conditions, (d) windy conditions, (e) rain, and (f) 

snow. The sensors were set up with two detection zones: one for the through and right-turn 

movements (Zone 1) and one for the left-turn lane (Zone 2). Trained personnel installed all systems, 

and decisions on the mounting locations were made by each system manufacturer.   
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Based on the results of this study, it can be concluded that there is no single system that universally 

performs better than all other systems. Depending on the time of day or weather condition, many of 

the system types tested could claim that their technology outperforms all others. However, based on 

the percentage of false and missed detections for all of the products representing the different system 

types, there are opportunities for future improvement and enhancement. The acceptable tolerance 

level ultimately must be decided upon by the agency operating a particular signal, and it is 

recommended, based on the results from this study, that specific performance standards be defined 

when solicitation of signal detection equipment occurs in the future. The following table is an example 

of the results produced in the Idaho study. All detectors were facing south and Zone 1 consisted of the 

two northbound through lanes.  

Zone 1  False Detections  Missed Detections  

System  Day  Night  Day  Night  

Aldis, Gridsmart  3.7%  9.6%*  0.9%  0.7%  

Iteris, RZ-4 Advanced WDR  4.3%  12.3%*  0.8%  1.1%*  

Trafficon, FLIR VIP 3D.2 Video detection board with 

an RDP optical camera  
2.0%  13.7%*  0.8%  0.9%*  

Peek, Color Video Camera  5.4%  9.6%*  1.8%  2.0%  
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MS Sedco, Intersector  1.4%  1.8%  0.6%  3.4%*  

Wavetronix  1.9%  1.3%  0.8%  1.6%*  

Trafficon, FLIR VIP 3D.2 Video detection board with 

a FLIR FC-T Thermal Sensor  
5.4%  12.9%*  0.4%  2.0%  

Iteris, Vantage Vector Hybrid  4.7%  11.3%*  1.0%  1.2%*  

Econolite, Autoscope Duo (Hybrid)  4.8%  1.0%*  1.4%  1.0%  

* Indicates nighttime result is statistically significantly different from daytime.  
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Commercially Available NIT Vehicle Detection Solutions  

Product information for NIT vehicle detection and surveillance technologies used for intersection 

control was obtained from the web sites of vendors and manufacturers of the equipment. In this 

report, only Video Image Processing products are included since that is the main focus of the project 

so far. Material from the 2007 report “A Summary of Vehicle Detection and Surveillance Technologies 

used in Intelligent Transportation Systems” produced by The Vehicle Detector Clearinghouse (5) was 

used and updated based on the latest available information. The products are grouped by Vendor in 

alphabetical order.  

General Information and Terms Used   

The TAP has raised a number of questions regarding the type of cabling required by each system. For 

efficiency we thought it will be easier to clarify upfront some of the terms already used in the 

following sections that answer these questions.  

Two-part Analog Video Systems  

Two-part analog video systems like the Teledyne Flir VIP 3D.x, the Autoscope RackVision Terra, Iteris 

Vantage Edge2, ITS+, and Oriux (Peek) VideoTrak, use a regular or thermal camera to produce a video 

feed and a separate video capture and analysis board in the cabinet. For all of these systems the 

cabling requirement depends on the actual camera model used. In the majority of cases, involving all 

older systems, the cabinet board, needs a coaxial cable with a BNC connector to carry the video signal. 

For those systems, a separate cable is needed to provide power to the camera.   

Two-part Digital Video Systems  

The Two-part Digital Video systems function in a similar fashion as the analog video equivalents with 

the difference being that they utilize an digital network camera. Inherently, network cameras are the 

same as analog cameras with the difference of having an additional frame capture and compression 

module. No image analysis is performed in the camera part. Systems like that are the Gridsmart and 

Miovision where the main image analysis component is on the cabinet connected to the cameras 

either through an isolated private network or over the cabinets Ethernet network. In these cases the 

camera is most likely an Powerover-Ethernet (POE) device combining into a single Cat-5 or Cat-6 cable 

power and data (video stream).  

Single-part systems  

Single part systems combine the camera and image analysis hardware into one device. Autoscope Solo 

was the first and most utilized device of this type. From the products covered in this report, all 

remaining Teledyne FLIR products, the Autoscope Vision, and the Iteris Vantage Vector all fit in this 

category. In reality calling them single-part is kind-of a misnomer since all of them require a data-
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communication card to be present into the cabinet. These cards, proprietary for each system, receive 

the serial data information produced by the video detection sensor and relay detection events to the 

rest of the cabinet. The older models in this category require 9 conductor twisted pair cables to carry 

the serial communication, provide power, and in some cases carry the video signal for monitoring. 

More recent systems like all the latest TrafiCam models and all hybrid sensors from Iteris are network 

devices in which case they require a POE connection through a Cat-5/6 cable.  

    

Teledyne Flir (Trafficon)  

Trafficon, a Belgium based company, has been a veteran in the field of video based vehicle detection 

sensors. In late 2012, Trafficon was acquired by FLIR Systems, a Teledyne group company best-known 

for its expertise in infrared photonics technology. Currently Flir produces two lines of products, one 

based on thermal sensors and a separate using visible spectrum sensors (video). There is also a hybrid 

system that uses both types of sensors.   

VIP 3D.x Video Image Processor https://www.flir.com/products/vip-3d/?model=10-

4303   

  

GENERAL DESCRIPTION OF EQUIPMENT: The FLIR VIP-3D.1 and FLIR VIP-3D.2 video detection boards 

are the two products originally marketed by Trafficon. The VIP3D.x Video Image Processor provides 

traffic data and information concerning the presence of vehicles approaching or waiting at the 

intersection. The input is analog video 75Ohm 1Vpp, PAL or NTSC.  

The VIP3D.x comes in two versions:  

• VIP3D.1 monitors 1 camera (1 video input)  

• VIP3D.2 monitors 2 cameras (2 video inputs)  

In a typical installation, two VIP3D.2 units are combined with one VIEWCOM/E for remote monitoring 

and change of configurations. The VIP 3D.x is a direct plug-in module for Type 170, NEMA TS-1 and TS-

2 controller cabinets. Although not clear in the systems description, these cards could be installed in 

an ATC cabinet and use the SDLC connection through the VIEWCOM/E.  

  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and tripline technology.  

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards. 

Machine vision processor installs in controller cabinet.  

https://www.flir.com/products/vip-3d/?model=10-4303
https://www.flir.com/products/vip-3d/?model=10-4303
https://www.flir.com/products/vip-3d/?model=10-4303
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INSTALLATION REQUIREMENTS: Bucket truck to mount camera. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 30 ft. Greater 

heights may be required to minimize vehicle occlusion when using side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Eight with stop bar and advanced 

vehicle presence detection.  

PRODUCT CAPABILITIES/FUNCTIONS:  

• VIP3D.1 provides up to 24 presence detection zones. VIP3D.2 provides up to 20 presence 

detection zones per camera.  

• Each presence zone call can be delayed, extended or combined with an input to inhibit the call.  

• Queue length measurements and directional counts on the intersection.  

• Combination of outputs and inputs using Boolean functions AND, OR and NOR.  

• VIP3D.1 provides eight data detection zones. The VIP3D.2 provides four data detection zones 

per camera.  

• Detectors: count, speed, classification, occupancy, density, headway and gap time.  

• Generation of alarm events such as: speed alarms (four service levels), speed drop, wrong way 

driver, queue length threshold and quality alarm.  

• Double and single data loop simulation.  

• Per zone, detection can be made direction sensitive.  

• Single zones can be edited without disturbing the detection.  

• Each VIP3D can control up to 24 outputs (four per board and 20 via the I/O extension boards) 

and 20 inputs (four for each of the five I/O extension boards).  

• VIP3D stores up to four configurations per camera.  

• Internal non-volatile memory database.  

• VIP3D link software handles:  

– Configuration upload and download  

– Data download (database or individual data monitoring)  

– Firmware upload via RS232 port – Event download.  

RECOMMENDED APPLICATIONS: Intersection vehicle detection for traffic signal control. Types of 

information available are vehicle presence; traffic data such as counts, speeds, classification, 

occupancy, density, headway, gap time; alarm events; wrong way driver detection; queue length; 

turning movement count.  

CLASSIFICATION ALGORITHMS: Available  

TELEMETRY: System connection via VIEWCOM/E (Ethernet). VIP3.x Link Software via serial 

communication RS232. Real time video output on module.  

COMPUTER REQUIREMENTS: Not mandatory  

DATA OUTPUT: The VIP3D.2 provides 24 digital outputs in total using expansion output modules 

(available in 3 types: 2 I/O, 4 I/O or 12 I/O). Presence, volume, speed data are provided.  
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DATA OUTPUT FORMATS: Analog video output with overlay of system information data and detection 

lines, auto diagnostic LED indicators, VIP3D.2 main board contains four optically isolated open-

collector outputs, expansion modules 2 I/O, 4 I/O and 12 I/O: 2, 4 or 12 digital in/outputs (with dip 

switches for selection of inputs and outputs)   

TRAFICAM® Integrated Camera and Presence Sensor for intersection applications − 

2nd Generation  

  

GENERAL DESCRIPTION OF EQUIPMENT: TrafiCam® integrates both a CMOS camera and detector in 

one compact box. This sensor monitors the presence of vehicles approaching or waiting at an 

intersection.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and tripline technology.  

SENSOR INSTALLATION: Camera and machine vision processor install on existing signal poles, mast 

arms, and luminaire standards. Wide field of view and narrow field of view lenses are available, 
depending on close (0-85 ft) or long range (50-250 ft) viewing, respectively.  

INSTALLATION REQUIREMENTS: Bucket truck to mount sensor. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 30 ft. Greater 
heights may be required to minimize vehicle occlusion when using side-mounted cameras.   

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Eight  

PRODUCT CAPABILITIES/FUNCTIONS:  

• 640 x 480 pixels (VGA), 20 FPS with JPEG compression  

• Up to 8 detection zones  

• Direction sensitive detection zones  

• Real-time traffic view  

• Optional: wireless communication/solar power  

• Automatic trigger into safe recall mode  

• MTBF > 11 years.  

RECOMMENDED APPLICATIONS: Intersection vehicle detection for traffic signal control. Types of 

information available are vehicle presence; traffic data such as counts, speeds, classification, 
occupancy, density, headway, gap time; alarm events; wrong way driver detection; queue length; 
turning movement count.  

CLASSIFICATION ALGORITHMS: Available  

TELEMETRY: Sensor configuration performed via USB connection. With a portable PC or PDA, sensor 
setup is available in your native language through a user-friendly software interface. RS 485 interface 

is also available.  
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COMPUTER REQUIREMENTS: TrafiCam PC Tool  

Output Contacts:   

• 4 via interface 1TI  

• 8 via interface 4TI ETH   

• 8 via 4TI ETH EDGE & 4/Os xp  

  

FLIR TrafiCam X-stream2  

https://www.flir.com/products/flir-traficam-x-stream2/   

  

GENERAL DESCRIPTION OF EQUIPMENT: The FLIR TrafiCam x-stream2 combines a CMOS 1/4” color 

digital camera and video detector into a single vehicle presence sensor. Detecting moving and 

stationary vehicles at signalized intersections. TrafiCam x-stream2 transmits vehicle presence 

information to a traffic controller via detection outputs or TCP/IP communication for adaptive and 

responsive signal timing.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and tripline technology.  

SENSOR INSTALLATION: Camera and machine vision processor install on existing signal poles, mast 

arms, and luminaire standards. Wide field of view and narrow field of view lenses are available, 

depending on close (0-85 ft) or long range (50-250 ft) viewing, respectively.  

INSTALLATION REQUIREMENTS: Bucket truck to mount sensor. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 30 ft. Greater 

heights may be required to minimize vehicle occlusion when using side-mounted cameras.   

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Eight  

PRODUCT CAPABILITIES/FUNCTIONS:  

• 640 x 480 pixels (VGA), 25 FPS with H.264, MJPEG  

• Real-time traffic view  

o PoE mode A for configuration, video streaming and data  

o 80 Mbps Broadband over Powerline communication via TI BPL2 or TI BPL2 Edge 

interface  

• Up to 8 detection zones  

• Direction sensitive detection zones  

• Optional: wireless communication/solar power  

• Automatic trigger into safe recall mode  

https://www.flir.com/products/flir-traficam-x-stream2/
https://www.flir.com/products/flir-traficam-x-stream2/
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CLASSIFICATION ALGORITHMS: Available  

TELEMETRY: Sensor configuration performed via Web page.  

COMPUTER REQUIREMENTS: Web browser 

Output Contacts:   

• 1 N/O and 1 N/C dry contact direct  

• 16 N/C dry contacts via TI BPL2 interface  

• 4 N/C dry contacts via TI BPL2 EDGE interface (more with additional 4 I/O USB expansion boards)  

• SDLC to traffic light controller via TI BPL2 EDGE interface and PIM module  

    

FLIR TrafiOne,  
https://www.flir.com/products/trafione/   

  

GENERAL DESCRIPTION OF EQUIPMENT: FLIR TrafiOne is an all-in-one sensor for traffic monitoring 

and dynamic traffic signal control. The FLIR TrafiOne uses thermal imaging and Wi-Fi technology to 

adapt traffic signals based on the presence detection of vehicles, bicycles and pedestrians, even in 

total darkness or adverse weather. The sensor also generates high-resolution data for measuring 

travel times for different modes of transport and to improve traffic flows. TrafiOne also includes an HD 

video camera for additional visual support.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and tripline technology  

SENSOR INSTALLATION: Camera and machine vision processor install on existing signal poles, mast 

arms, and luminaire standards.   

Two options for field of View (recommended for 2 lanes only)  

• 95°H for 0 - 50 ft Detection Distance   

• 56°H for 33 - 82 ft Detection Distance  

INSTALLATION REQUIREMENTS: Bucket truck to mount sensor. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 11 ft. Greater 

heights may be required to minimize vehicle occlusion when using side-mounted cameras.   

PRODUCT CAPABILITIES/FUNCTIONS:  

• Focal Plane Array (FPA), Uncooled VOx microbolometer Long wave Infrared (8 – 14 μm)  

• 160 x 120), 9 FPS with H.264, MJPEG  

• Curbside and on-crossing pedestrian and bicycle presence detection  

https://www.flir.com/products/trafione/
https://www.flir.com/products/trafione/
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• Real-time traffic view  

o 1080 × 1920 pixel HD color CMOS, 30 FPS, H.264, MJPEG  

o PoE mode A  and B for configuration, video streaming and data  

o Mbps Broadband over Powerline communication via TI BPL2 (Edge) 

o interface Wi-Fi, IEEE 802.11 type b.g.n. EIRP < 100mW   

• Detection zones:  

o 8 vehicle presence zones  

o 8 pedestrian presence zones   

o FLIR VSO data - optional Acyclica license  

o Modules (Reporting Module, Planning Module, Signal Timing Tools) - optional 

Acyclica licenses  

o Wi-Fi Travel Time analytics - optional Acyclica license   

TELEMETRY: Local/remote web page setup via PoE, Wi-Fi, or BPL3  

COMPUTER REQUIREMENTS: Web browser 

Output Contacts:   

• 1 N/O and 1 N/C dry contacts direct  

• 16 N/C dry contacts via TI BPL2 or TI BPL2 EDGE interface   

  

TrafiSense2 Dual https://www.flir.com/products/thermicam-

dual/   

  

GENERAL DESCRIPTION OF EQUIPMENT: FLIR TrafiSense2 Dual combines best-in-class thermal and 

visual imaging technology with advanced video analytics to provide vehicle and bicycle presence 

detection at signalized intersections, day and night. Thermal imaging lets traffic operators see in total 

darkness and inclement weather. The FLIR TrafiSense2 Dual’s visible-light camera provides high-quality 

images for control room operators.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and tripline technology.  

SENSOR INSTALLATION: Camera and machine vision processor install on existing signal poles, mast 

arms, and luminaire standards.   

Five options for field of View   

• 90°H / 69°V   

• 69°H / 56°V   

• 45°H / 37°V   

https://www.flir.com/products/thermicam-dual/
https://www.flir.com/products/thermicam-dual/
https://www.flir.com/products/thermicam-dual/
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• 32°H / 26°V   

• 25°H / 20°V   

INSTALLATION REQUIREMENTS: Bucket truck to mount sensor. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 30 ft. Greater 

heights may be required to minimize vehicle occlusion when using side-mounted cameras.   

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Eight  

PRODUCT CAPABILITIES/FUNCTIONS:  

• Focal Plane Array (FPA), Uncooled VOx microbolometer Long wave Infrared (7.5 – 13.5 μm) 

•  640 × 512 pixels (VGA), 30 FPS with H.264, MJPEG  

• Real-time traffic view  

o 1280 × 720 pixel HD color, 25 FPS, H.264, MJPEG PoE mode  

o For configuration, video streaming and data  

o PoE mode A for configuration, video streaming and data  

o 80 Mbps Broadband over Powerline communication via TI BPL2 or TI BPL2 Edge interface  

• Detection zones: 

o Vehicle presence detection & counting (24)  

o Bicycle presence detection & counting (8)  

o Traffic data collection & traffic flow monitoring (6)  

o Wrong-way driver detection (6, requires extra license)  

TELEMETRY: Sensor configuration performed via Web page.  

COMPUTER REQUIREMENTS: Web browser  

Output Contacts:   

• 64 output states via TI BPL2 EDGE interface  

• SDLC to traffic light controller via TI BPL2 EDGE interface and PIM module  

    

FLIR TRAFICAM AI  

https://www.flir.com/products/traficam-ai/    

  

GENERAL DESCRIPTION OF EQUIPMENT: Designed to reliably detect and classify road users, the 

TrafiCam AI is an intelligent HD visible sensor for traffic monitoring in complex urban environments. 

Featuring a CMOS Type 1/2.8 color, low-light HD visible camera and AI algorithms built on 25+ years of 

traffic detection, TrafiCam AI offers detailed vision and data collection for safer, more efficient cities. 

https://www.flir.com/products/traficam-ai/
https://www.flir.com/products/traficam-ai/
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Capable of tracking multiple objects, the advanced edge-based AI effectively controls intersections and 

gathers detailed traffic data for better city planning decisions  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – Object detection: (motor)bike, small 

vehicles (car, van), big vehicles.  

SENSOR INSTALLATION: Camera and machine vision processor install on existing signal poles, mast 

arms, and luminaire standards. Wide field of view and narrow field of view lenses are available, 

depending on close (0-85 ft) or long range (50-250 ft) viewing, respectively.  

INSTALLATION REQUIREMENTS: Bucket truck to mount sensor. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 30 ft. Greater 

heights may be required to minimize vehicle occlusion when using side-mounted cameras.   

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Eight  

PRODUCT CAPABILITIES/FUNCTIONS:  

• Full HD (1920 x 1080), 25 FPS with H.264, MJPEG  

• Real-time traffic view  

o PoE mode A for configuration, video streaming and data  

o 80 Mbps Broadband over Powerline communication via TI BPL3 (Edge) interface  

o Wi-Fi, IEEE 802.11 type b.g.n. EIRP < 100mW *1  

• 24 virtual loops for presence detection  

• 8 traffic data zones for classification and counting  

• Queue Length Monitoring  

• Premium Traffic Data Collection - optional license  

o FLIR VSO data - optional Acyclica license  

o Modules (Reporting Module, Planning Module, Signal Timing Tools) - optional Acyclica 

licenses  

o Wi-Fi Travel Time analytics - optional Acyclica license   

TELEMETRY: Local/remote web page setup via PoE, Wi-Fi or BPL  

COMPUTER REQUIREMENTS: Web browser  

Output Contacts:   

• 4 N/C onboard + maximum 5x N/C via 4I/O USB expansion boards (so maximum 24 outputs in 

total)  

• SDLC: BIU - 64 or SUI - 128  
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FLIR TrafiSense AI, AI-Powered Thermal Traffic Sensor  

https://www.flir.com/products/traficam-ai/    

  

GENERAL DESCRIPTION OF EQUIPMENT: Designed to reliably detect and classify road users, 

TrafiSense AI is an intelligent thermal imaging sensor for traffic monitoring in complex urban 

environments. Featuring AI algorithms built on 25+ years of traffic detection and best-in-class thermal 

imaging, TrafiSense AI delivers continuous vision and data collection. Capable of tracking multiple 

objects in any lighting condition, the advanced edge-based AI technology controls intersections and 

gathers detailed traffic data.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – Object detection: (motor)bike, small 

vehicles (car, van), big vehicles, and pedestrians.  

SENSOR INSTALLATION: Camera and machine vision processor install on existing signal poles, mast 

arms, and luminaire standards.   

Three options for field of View  

• 90°H x 69°V for 5 - 180 ft Detection Distance  

• 44°H x 35°V for 30 - 260 ft Detection Distance  

• 32°H x 26°V for 80 - 300 ft Detection Distance   

INSTALLATION REQUIREMENTS: Bucket truck to mount sensor. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 30 ft. Greater 

heights may be required to minimize vehicle occlusion when using side-mounted cameras.   

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Eight  

PRODUCT CAPABILITIES/FUNCTIONS:  

• Focal Plane Array (FPA), Uncooled VOx microbolometer Long wave Infrared (7 – 14 μm)  

• VGA (640 x 480), 30 FPS with H.264, MJPEG  

• Real-time traffic view  

o PoE mode A for configuration, video streaming and data  

o 80 Mbps Broadband over Powerline communication via TI BPL3 (Edge) interface  

o Wi-Fi, IEEE 802.11 type b.g.n. EIRP < 100mW   

• Detection zones:  

o 24 virtual loops for presence detection  

o 8 traffic data zones for classification and counting  

o 8 Bicycle & Pedestrian detection zones 

o 4 Queue Length Monitoring zones  

o 6 Wrong Way Driver detection zones  

https://www.flir.com/products/traficam-ai/
https://www.flir.com/products/traficam-ai/
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▪ Premium Traffic Data Collection - optional license  

▪ Services:  

• FLIR VSO data - optional Acyclica license  

• Modules (Reporting Module, Planning Module, Signal Timing Tools) 

- optional Acyclica licenses  

• Wi-Fi Travel Time analytics - optional Acyclica license   

TELEMETRY: Local/remote web page setup via PoE, Wi-Fi, or BPL3  

COMPUTER REQUIREMENTS: Web browser  

Output Contacts:   

• 4 N/C onboard + maximum 5x N/C via 4I/O USB expansion boards (so maximum 24 outputs in 

total)  

• SDLC: BIU - 64 or SUI - 128  

SUPPORTING DATA BASE AND TRAFFIC MANAGEMENT SYSTEMS:   

FLIR FLUX.  

FLUX is an intelligent software platform for use with a FLIR video detection system. FLUX collects 

traffic data, events, alarms and video images generated by the video detectors, sensors and cameras. 

FLUX also offers video management capacity and can control network video recorders, video walls, 

mobile and fixed cameras.  

CAMELEON ITS  

Cameleon ITS is a central software platform for transportation monitoring and management that 

allows for the control of ITS-specific devices, including cameras, DMS signs, detector stations, gates, 

signal heads and incident detection. Cameleon ITS includes a complete video management solution 

native to the application.  
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Gridsmart – Cubic  

GRIDSMART specializes in video detection at the intersection utilizing image processing, computer 

vision modeling and machine learning along with a single camera solution providing data for 

controlling  the flow of people and traffic through intersections. This solution tracks cars, trucks and 

bicycles while recording turning movements, vehicle counts, incidents and classifications. GRIDSMART 

Technologies, Inc. has operated out of Knoxville, Tennessee, since 2006. Initially called Aldis, it 

changed the name to Gridsmart in 2015. Gridsmart was acquired by Cubic Co. in 2019 creating a new 

business division called Cubic Transportation Systems. The product still carries the name Gridsmart 

(https://gridsmart.com/).  

GENERAL DESCRIPTION OF EQUIPMENT:  

The Gridsmart vehicle sensor is a combination of two parts, the Smartmount Bell Camera that 

captures the video feed and the GS2 Processor which processes the video and produces the vehicle 

detection information. The Gridsmart software, commonly referred to as the Client, allows the 

management of intersections in real-time. The Client is typically installed on a laptop and used to 

configure the Gridsmart Processor on-site during installation. If the cabinet is on a network, the Client 

can remotely access the system to view and configure sites, replay recorded video, calls and phases, 

generate reports and email alerts.  

  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – Object detection: (motor)bike, small 

vehicles (car, van), big vehicles, and pedestrians.  

Video Capture  

https://gridsmart.com/
https://gridsmart.com/
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The SMARTMOUNT Bell Camera delivers tracking through the entire intersection, including the center 

where vehicles and vulnerable road users cross. The horizon-to-horizon approach offers turn counts, 

situational awareness, views and functionality from the center of the intersection, and unobstructed 

incident management views. The camera’s virtual pan-tilt-zoom enables users to set up multiple views 

and adjust those anytime as needed without impacting performance. The Bell Camera shape protects 

the lens by mitigating sun glare and adverse weather conditions.  

  

5MP CMOS IP-camera with Power over Ethernet in a IP68 Internally pressurized and leak tested 

enclosure. Image resolution : 2560 x 1920 pixels   

A traditional camera is to be used for advanced detection or other hard to see areas like underpasses 

and garage exits.    

The SMARTMOUNT Bell Camera includes the Bell Camera, Junction Box, GRIDSMART custom modular 

pole assembly, SMARTMOUNT Bracket and Electronic Protection Module (EPM). The pole assembly 

has been independently tested for wind speeds up to 150 mph.  

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards.   

INSTALLATION REQUIREMENTS: Bucket truck to mount camera. Minimum camera mounting height is 

at least 30 ft. and preferably within 75ft of the intersection center and within 150ft from the furthest 

stopbar.   

If the camera is going to be more than 300ft from the cabinet, additional signal repeaters must be 

used to avoid communication issues.  

GRIDSMART System Processor  

The GRIDSMART System Processor runs the GRIDSMART Engine, a suite of vision-tracking algorithms 

that build a 3-dimensional model of cars, trucks, pedestrians, and other objects approaching the 
intersection. The object trajectories are tracked through user-defined zones at the intersection and 
follows them until vehicles exit, delivering unmatched accuracy.  
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The GS2 Processor can be installed horizontally, vertically, or rack mounted. GS2 is housed in a rugged, 

powder coated aluminum housing with a latch release allowing access to internal components without 

tools. Supports two fisheye cameras, or one fisheye and multiple traditional cameras.  

Detector I/O: TS1, TS2, 170/2070, or ITS interface. 24 optically isolated outputs, SDLC interface 

conforming to TS2 specs. Programmable up to 64 detectors.  

Connectivity: Wide Area Network (WAN)  

COMPUTER REQUIREMENTS: Web browser  

  

 

Product Evolutions  

There are no official info on the hardware and software prior to 2015. On September 2015, shortly 

after the name change to Gridsmart, GRIDSMART 6.0 became available along with the new version of 

the Gridsmart system processor the GS2. The GS2, is field repairable without the need for tools, was 

reduced in size by two-thirds from the original GRIDSMART Processor and has multiple USB 3.0 

expansion ports for flexibility, and an intuitive LED front panel display showing calls and light states. 

Another new addition to GS2 was a built-in Wi-Fi connection or a standard Ethernet connection.  

GRIDSMART 6.0 introduced the new Performance Module replacing the Counts and Realtime Data 

Modules. The Performance Module enables historical reporting on performance-related data that was 

previously only available for the last hour through the Realtime Data API. New report types became 
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available with the Performance Module, including multi-day aggregation, by sum or average, on 

volume and turning movement reports, as well as red and green occupancy.  

March 2018 GRIDSMART Version 6.8 was released. This version improved startup speed, reduced 

camera discovery time, and added the Occupancy Based Actuation (OBA) feature. OBA lets customers 

create vehicles zones that trigger different outputs based on the estimated number of vehicles in the 

zone.  

GRIDSMART version 19.3 released April 2019, delivered an entirely new way to manage bicyclists at 

signalized intersections. The system tracks cyclists as they travel through the intersection, providing 

the correct amount of green time for individuals based on their chosen path and speed.  

Released in January of 2019, Version 19.10 deploys pedestrian and cyclist safety features in the base 

GRIDSMART System. Previously, both pedestrian zones and bikes-in-the-box were only available at an 

added cost.   

GRIDSMART System Software Version 19.12, released July 2020 introduced Streams independently 

from the Performance Plus Module. This change meant that users can do remote monitoring network, 

video recording, and use it with third-party video management systems that support RTSP 2.0. 19.12 

also came with the ability to edit phase-to-channel mappings in the Device Manager dynamically. This 

ability let users control how they customize their maps to channels.  

Version 20.10, released October 2020 introduces departure pulses for vehicle zones. Zones can now 

be set to send a single pulse for each vehicle that exits, simplifying use and integration into ATSPM 

platforms such as UDOT's Signal Performance Measures. It also introduced a User-defined timed 

recall. Users can set recall on individual zones or the entire site for a specified duration. This can be 

useful for unforeseen extreme weather events, accidents, or construction that are not handled by the 

normal programming. Finally, new Vehicle Zone Detection Type setting that supports Stop-line, 

Advanced, or Other. Now you can set phases on zones other than Stop-line. This can simplify 

bookkeeping for analytics (e.g., via the API). Also, Advanced zones with phases will now conform to 

the min/max recall setting.   

Version 21.3, released March 2021 introduces GRIDSMART Protect. GRIDSMART Protect is a new value 

offering in the GRIDSMART solution family to provide Vulnerable RoadUser (VRU) safety - such as 

bikesin-the-box, pedestrian actuation and pedestrian all-clear where existing detection such as loops 

may already be inplace. Both GRIDSMART Protect and GRIDSMART System support the add-on VRU 

Data Module (VDM) to provide VRU analytics such as bike and pedestrian counting. 21.3 Introduces 

also the Pedestrian Wait Zone for touchless actuation. Pedestrian Wait Zones are included in both the 

existing GRIDSMART System software and the new GRIDSMART Protect software. Finally, this version 

adds pedestrian counting to the Performance Module and the VRU Data Module, including a 

Pedestrian Count report and access via the API.    

Image Sensing Systems – Econolite  
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Image Sensing Systems (ISS), is a provider of above-ground detection and information management 

solutions for the Intelligent Transportation Systems (ITS) sector. ISS Autoscope video detection, RTMS 

radar detection, and IntellitraffiQ software provides accurate, intersection, highway, and wrong way 

detection and transportation data solutions. ISS emerged in 1984 when Dr. Panos Michalopoulos, at 

the University of Minnesota, foresaw the potential that video image processing technology could have 

to advance traffic management. The NIT sensors developed by ISS are manufactured and distributed 

through Econolite along with other vehicle detection solutions. In this document we will only discuss 

current and past products based or including video image processing offered under the Autoscope 

product line. For convenience we include only products marketed after 2007.  

  

Autoscope Solo Terra Video Detection System (Discontinued)  

  

GENERAL DESCRIPTION OF EQUIPMENT: The Autoscope Solo Terra sensor contains a color video 

camera as part of this integrated detection and surveillance machine vision system. It installs with 

three wires and reduces maintenance with ClearVision faceplate coating. The Solo Terra sensor 

provides timely vehicle detection, traffic data measurement, speed, and incident detection data.  

A cabinet card version of the same sensor was also available accepting video from any analog CCTV 

camera. Operation and capabilities were identical.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and tripline technology.  

SENSOR INSTALLATION: Autoscope Solo Terra unit installs on existing signal poles, mast arms, and 

luminaire standards.  

INSTALLATION REQUIREMENTS: Camera and sensor are integrated into one unit. Camera mounting 

over center of monitored lanes provides optimum performance. Minimum camera mounting height is 

30 ft. Greater heights may be required to minimize vehicle occlusion when using side-mounted 

cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Six to seven  

PRODUCT CAPABILITIES/FUNCTIONS:  

• Connectivity for IP-addressable broadband communications − EasyLink connectivity for simple 

installation into the traffic cabinet and integration into an agency's IP-based communications 

network. A standard CAT-5 cable connects Terra Technology products into a network providing 

access to video, traffic data, and the Autoscope Solo Terra vehicle detection system.  

• Web server interface for easy setup  

• Streaming digital MPEG-4 video output  
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• Vehicle detection, traffic data measurement, speed, and incident detection  

• Integrated color camera, zoom lens, and dual-core processor for advanced image processing  

• Direct real-time iris and shutter speed control  

• Fail-safe detector outputs with the Autoscope Terra Access Point (TAP)  

• High energy transient protection  

• Technologically advanced faceplate heater and ClearVision faceplate coating  

CLASSIFICATION ALGORITHMS: User selectable by length into 5 – 6 bins.  

DATA OUTPUT:   

Detection zones provide traffic count, presence, speed, and incident detection alarms. Incident types 

include freeway congestion, stopped vehicles, wrong direction vehicles, slow-moving vehicles, 

bicycles, pedestrians, smoke/fire, debris, or other customized alarms. Real-time polling or stored data 

include volume, occupancy, five vehicle classes by length, density, and other traffic data for selected 

periods or by phase.  

Detector outputs can be assigned to interface with NEMA TS1/TS2, Type 170/179 and 2070 ATC 

controller via the optional Autoscope Terra Access Point (TAP).  

 

Autoscope ENCORE (discontinued)  

  

Encore was an upgrade in the sensor hardware and looks but in terms of functionality and video image 

analysis technology it had very little differences from the Autoscope Solo Terra. The connection to the 

rest of the cabinet was achieved through the same Autoscope Terra Access Point showed above.  
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Autoscope Duo (discontinued)  

           

  

GENERAL DESCRIPTION OF EQUIPMENT: Autoscope® Duo™ was a hybrid radar and video vehicle 

detection system. In essence, the Duo combined together the earlier video image processing 

technology of the Terra and Encore with an SmartMicro radar sensor. The two sensors operated 

independently, sending detection information to the Duo Detection Module (DDM). The DDM is a 

detector card for a standard Detector Rack or Input File. It performs the decision logic process to 

combine radar and video information for optimal detector performance. The DDM converts standard 

NTSC analog video to streaming digital MPEG-4 video to view locally at the traffic cabinet or remotely 

from the office. The DDM input/output capabilities include detector port master capabilities. The DDM 

interfaces detector outputs directly to NEMA TS1/TS2, Type 170/179, or 2070 ATC controllers.  

Sensor Information:  

Radar  

• Max range (passenger car from typical mast arm mount location) 290 ft  

• Total field of view: ±35° AZ; ±8° EL  
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• Max transmit power (EIRP) 20 dBm  

• Frequency Band: 24.0—24.25 GHz  

• Bandwidth < 100 MHz  

Video Sensor  

• Lens: 10x zoom, 5° to 46° horizontal, 4° to 35° vertical  

• 1/4in. color CCD, NTSC format  

• Resolution > 470 TVL horizontal  

• Sensitivity at lens, full video, no AGC, 3.0 Lux (typical)   

Communications  

• Ethernet 10/100 Base-T RJ45 connection for setup and operational use  

• Port 1 SDLC DB-15 connector for TS2 Serial Detector I/O communications with the controller  

• RS-485 bus on card edge for inter-processor Detector Port communications (master-slave)  

• USB connector for serial communications to the radar sensor via interface panel  

Autoscope RackVision Terra and Autoscope RackVision™ Pro 1 & 2  

  

GENERAL DESCRIPTION OF EQUIPMENT: The Autoscope RackVision Terra Autoscope RackVision™ Pro 

1 & 2 Machine Vision Processors (MVP) are video detection solutions that feature simple setup, robust 

color or black and white image processing. Both products connect to existing color or black and white 

Autoscope or (other compatible camera) analog video camera.  

These two currently available  products are the last ones using the original video image processing, 

pixel tracking, and tripline technology. Both versions use analog video provided by dedicated CCTV 

cameras. Upgrades in the software have added improved bicycle detection. In a recent upgrade these 

sensors support the Autoscope Cyclescope feature which provides Bicycle Differentiation, meaning 

that as a tracked object approaches the detection zone, Cyclescope determines whether or not the 

object is a bicycle—in any lane. Cyclescope was introduced in version 10.5.0 of the Autoscope 

Software Suite.  

Another recent addition to this products is the decoupling from the need of an external computer to 

setup and manage the sensor operation. SmartMouse allows the traffic engineer or signal technician 

to connect a mouse and monitor to the video output of the RackVision, without having to use a laptop. 

By using SmartMouse, you can configure stop-bar and advance extension video detection zones in 

moments, without extensive training. Also available is a C1Y Cable for easy cabinet integration without 

the need for re-wiring or modifications to the traffic cabinet detector rack.  

The RackVision Terra detector card interfaces detector outputs directly to NEMA TS1/TS2, Type 

170/179, or 2070 ATC controllers. The optional Terra Access Point (TAP) can also assign detector 
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outputs. For central systems, the optional Software Developer’s Kit (SDK) can quickly integrate traffic 

data into a proprietary database. In TS1 or 33x cabinets, the RackVision Terra can interface to select 

TS2 traffic controllers with a Port 1 SDLC communications cable. 

Autoscope Vision®  

 

GENERAL DESCRIPTION OF EQUIPMENT: Autoscope Vision® is an integrated camera-processor sensor 

provides high performance stop bar vehicle detection, bicycle detection and differentiation, advance 

vehicle detection, traffic data collection, and High-Definition video surveillance. Autoscope Vision is 
capable of concurrently satisfying multiple transportation management objectives:  

• Stop bar vehicle detection  

• Bicycle detection and differentiation  

• Advance vehicle detection up to 600 feet from Vision sensor  

• Traffic data collection  

• HD video surveillance  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – Object tracking (unverified). From the 

Vendor the following has been stated:  

Autoscope Vision uses a completely new detection algorithm, combined with a high-definition 

(HD) (720p) video sensor to provide the highest levels of video detection accuracy and 

versatility.  

Because of this the standard way of setting up the Field of View for Vision, as well as 

placement and size of zones isn’t the same as past Autoscope products like Encore, Solo Terra 

or RackVision Terra.  

The suggestions is that the machine vision algorithms used process the entire image and not 

only specific small parts of the frame (triplines).  

SENSOR INSTALLATION: Autoscope Vision installs on existing signal poles, mast arms, and luminaire 

standards.  

INSTALLATION REQUIREMENTS: Camera and sensor are integrated into one unit. Camera mounting 

over center of monitored lanes provides optimum performance. Minimum camera mounting height is 

30 ft. Greater heights may be required to minimize vehicle occlusion when using side-mounted 

cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Six to seven  

PRODUCT CAPABILITIES/FUNCTIONS:  

Video  
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• HD streaming video output  

• H.264 720p (1280 x 720) video output  

• Image snapshot resolution 1280 x 720  

Lens  

• 10X motorized zoom  

• Standard configuration:  

• Horizontal: 7.6 to 67.0 degrees  

• Vertical: 4.3 to 37.7 degrees  

• Focal Length 3.8mm to 38mm  

Camera  

• 1/2.8” CMOS sensor  

• 2MP  

• Signal-to-noise > 50 dB  

• Wide dynamic range  

• Noise reduction  

• High sensitivity mode  

Communications  

• System connections via Autoscope Vision Comm Manager Ethernet RJ-45 WAN Port  

• Ethernet RJ-45 for installation/maintenance  

• WiFi communications via Autoscope Vision Comm Manager for installation/maintenance and 

video streaming   

• The Vision Comm Manager supports SDLC and wired I/O interface for convenient integration to 

TS1, 170/2070/33x and TS2 cabinets  

 

Iteris  

Iteris along with its subsidiaries provides smart mobility infrastructure management solutions. Co.'s 

reportable segments consist of: Roadway Sensors and Transportation Systems. The Transportation 

Systems segment includes engineering and consulting services, transportation performance 

measurement and traffic analytics solutions, end-to-end solutions delivered as cloud-enabled 

managed services. The Roadway Sensors segment provides detection sensors and systems for traffic 

management that comprise Co.'s family of Vantage sensors and BlueTOAD line of products, as well as 

communication systems and roadway traffic data collection applications that complement its sensor 

products.   

The Iteris detection sensors have followed an similar evolutionary path as the ones by Flir-Trafficon, 

Image Sensing Systems, and Peek in that they started early with the capture of analog video and the 

use of pixel tracking and tripline image analysis methods. Like ISS, Iteris also produced a Hybrid video 

and Radar sensor product but unlike ISS Iteris has continued the development of such hybrid sensors 
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and still includes them in the available product line. Iteris, like Gridsmart, Miovision, and ISS has 

recently switched to more advanced machine vision algorithms based on object recognition and 

tracking.  

  

  

VersiCam™  

https://www.iteris.com/products/detection-sensors/versicam  

  

GENERAL DESCRIPTION OF EQUIPMENT: VersiCam™ is an integrated machine vision processor and 

camera solution, designed for small or semi-actuated intersections. VersiCam is a versatile, high 

resolution video traffic camera specially optimized for machine vision processor technology. The 

camera offers remote zoom and focus functions to simplify setup and includes a high sensitivity color 

imager (CCD) to ensure accurate vehicle detection in all lighting conditions.  

The VersiCam solution includes the Interface Communication Controller (ICC) that resides in the 

roadside cabinet. All user interface functions are performed through the ICC such as virtual zone 

placement, detector output assignment, and video monitoring.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and trip-line technology. Cameras are analog color or monochrome CCD units.  

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards.  

INSTALLATION REQUIREMENTS: Camera mounting over center of monitored lanes is ideal, with 

minimum height of 30 ft. Greater heights may be required to minimize vehicle occlusion when using 

side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: 2 lanes  

PRODUCT CAPABILITIES/FUNCTIONS:  

Camera  

• Color CCTV, 530 TV Lines, Automatic white balance  

• Focal length and focus adjustable for horizontal FOV ranging from 4.6° wide to 46.0° wide (65° 

wide for VersiCam Flex).  

Interface Communication Controller  

• NEMA TS-1 and TS-2 controller compatible.  

• Detector zones are normally placed in one lane with multiple zones per lane.  

• Detector zones can be AND’d or OR’d together to provide enhanced operation.  

https://www.iteris.com/products/detection-sensors/versicam
https://www.iteris.com/products/detection-sensors/versicam
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• Each detector zone holds a call for presence while vehicle remains in the zone.  

• Programming is facilitated with a pointing device using menus shown as an overlay on the 

displayed video.  

TELEMETRY: Via RS 232 serial port or RJ45 Ethernet using eAccess communication module, which is an 

802.3 compliant TCP/IP interface.  

COMPUTER REQUIREMENTS: None for setup or operation  

DATA OUTPUT: Presence  

DATA OUTPUT FORMATS:  

• Connector (6-way) for camera.  

• 1 BNC video output   

• USD female for pointing device per Edge2 or eAccess module  

• DB9 male for RS-232 interface   

• 2 open collector outputs  

SUPPORTING DATA BASE MANAGEMENT SYSTEM: VRAS – Vantage Remote Access Software for 

remote access  

  

    

Vantage Edge2 Video Detection System  

https://www.iteris.com/products/detection-sensors/vantageedge2   

  

GENERAL DESCRIPTION OF EQUIPMENT: Iteris’ Vantage Edge2™ is a machine vision processor 

consisting of a family of modules that provide 170/2070, TS-1, or TS-2 detection outputs to an 

intersection traffic controller for actuated operation. The modular approach allows the configuration 

to grow and adapt as the size and complexity of the intersection change. It is programmed using built-

in menus that appear as a graphics overlay on the video image. The Vantage Edge2™ provides failsafe 

operation mechanisms and motion stabilization in high wind conditions.   

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and trip-line technology. Cameras are analog color or monochrome CCD units.  

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards.  

https://www.iteris.com/products/detection-sensors/vantageedge2
https://www.iteris.com/products/detection-sensors/vantageedge2
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INSTALLATION REQUIREMENTS: Camera mounting over center of monitored lanes is ideal, with 

minimum height of 30 ft. Greater heights may be required to minimize vehicle occlusion when using 

side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: 6 lanes  

PRODUCT CAPABILITIES/FUNCTIONS:  

Camera  

• Any analog color CCTV camera with 540 TV lines minimum is technically compatible. Following 

info is about the preferred Iteris RZ-4 Advanced WDR camera.  

• Color CCTV, 530 TV Lines, Automatic white balance, .003 lux capable  

• Focal length and focus adjustable for horizontal FOV ranging from 4.5° wide to 48.0° wide  

• Adjustable/auto focus  

Cabinet Card  

• NEMA TS-1 and TS-2 controller compatible.  

• TS-2 Bus Interface Unit (BIU) supports use in TS-2 Type 1 systems.  

• 24 detector zones per camera configuration.  

• Edge2 processor modules support 1, 2, or 4 video inputs.  

• Extension modules support 2, 4, 24, or 32 output channel configurations.  

• Detector zones are normally placed in one lane with multiple zones per lane.  

• Detector zones can be AND’d or OR’d together to provide enhanced operation.  

• Each detector zone holds a call for presence while vehicle remains in the zone.  

• Three detector configurations can be stored for each camera and swapped according to Time of 

Day (TOD).  

• Programming is facilitated with a pointing device using menus shown as an overlay on the 

displayed video.  

• Communication modules provide remote programming and streaming video.  

TELEMETRY: Via RJ45 Ethernet using Edge® 2 SDLC Interface Module.  
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COMPUTER REQUIREMENTS: None for setup or operation  

DATA OUTPUT: Presence, Delay, Extend, Count, CSO (Count, Speed, and Occupancy), Pulse, Demand 

and Passage.   

SmartCycle patented technology is embedded in all new Vantage® video detection systems and is a 

simple upgrade to existing systems in the field. Additional zones can then be drawn to separate bicycle 

detections from vehicle detections. Detects and differentiates in unique situations: bike boxes, lane 

splitting, other innovative configurations.  

PedTrax was added as an extension providing pedestrian presence, counts and speed data. PedTrax 

provides automatic counting, direction and speed tracking of pedestrians within the crosswalk. Along 

with collecting this information with normal vehicle and bicycle detection, PedTrax can provide 

discrete outputs when detecting pedestrians moving in the crosswalk. The PedTrax feature is 

embedded within Iteris detection algorithms, there is no need for any additional equipment for 

operation.  

DATA OUTPUT FORMATS:  

Edge2 card  

• Up to 2 BNC video inputs per Edge2 module, NTSC or PAL  

• 1 BNC video output per Edge2 module  

• USB A for pointing device per Edge2   

• USB B for Communications  

Edge® 2 SDLC Interface Module  

• Standard detector interface  

• 8 x RJ45 receptacles (4 input to connect with up to 4 Edge2 cards, 4 output)  

• SDLC DB15 connector  

  

SmartSpan®  

https://www.iteris.com/products/detection-sensors/smartspan  

   

GENERAL DESCRIPTION OF EQUIPMENT: SmartSpan, for intended purposes can be considered as a 

special version of the Vantage Edge2 system because it is using a regular analog video camera input to 

capture the road scene. SmartSpan specifically includes Dynamic Zone Stabilization (DZS) algorithms. 

With DZS, camera movement is tracked and compensated to provide accurate stop-bar and advanced 
detection.   

https://www.iteris.com/products/detection-sensors/smartspan
https://www.iteris.com/products/detection-sensors/smartspan


C-40 

 

All remaining information are identical to the Vantage Edge2 system including the actual camera 

sensor.  

    

Vantage Vector Hybrid  

https://www.iteris.com/products/detection-sensors/vantage-vector-hybrid   

  

GENERAL DESCRIPTION OF EQUIPMENT: The Vantage Vector® system is an all-in-one detection sensor 

that combines video and radar for stop bar and advance zone detection to enable advanced safety and 

adaptive control applications. Compatible with the Vantage Edge2®, Vantage Next® and Vantage 

Apex™ systems, the Vantage Vector detection sensor includes all the benefits of Iteris video detection, 
including remote video viewing, pedestrian detection, and bicycle differentiation.  

SENSOR TECHNOLOGY AND CONFIGURATION:   

• Machine vision – video image processing, pixel tracking, and trip-line technology.  

• Radar - advanced 4D, high-definition (HD).  

SENSOR INSTALLATION: Sensor installs on existing signal poles, mast arms, and luminaire standards.  

INSTALLATION REQUIREMENTS: Sensor mounting over center of monitored lanes is required with 

minimum height of 30 ft.   

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: four  

  

PRODUCT CAPABILITIES/FUNCTIONS:  

Camera  

https://www.iteris.com/products/detection-sensors/vantage-vector-hybrid
https://www.iteris.com/products/detection-sensors/vantage-vector-hybrid
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• Focal Length 5.4° tele to 50.7° wide  

• 1.0 Lux Minimum Illumination with 3D-DNR Noise Reduction  

• 12x Optical Zoom  

• No information regarding image resolution is provided. Given that the new product Vantage 
Apex is described as the only full HD video sensors, it implies that the camera in the Vector is 
not full HD.  

 Radar  

• 24GHz (K-band)  

• Speed 0 to 150mph ±1mp, up to 60 tracked objects  

• Vehicle detection up to 600 feet  

TELEMETRY: Vantage Vector is just the sensor. It requires an Iteris detection platform in the cabinet to 

complete the system and connect with the rest of the traffic control equipment.  

 

    

Vantage Next® Platform  

https://www.iteris.com/products/detection-sensors/vantagenext   

  

GENERAL DESCRIPTION OF EQUIPMENT: Vantage Next® is Iteris’ second generation vehicle detection 

platform that capitalizes on the latest technology. Vantage Next uses a powerful processor that 

enables future functional growth while maintaining proven Iteris video detection performance and 

reliability. One significant difference to the Edge2 product family is that the camera sensor is now a 

POE IP camera connected to the system through a CAT5 network cable. The platform also supports 

different types of sensors like the video and radar hybrid (Vantage Vector) and radar only (Vantage 
Radius).  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and trip-line technology.  

Can also connect to Vantage Vector a video/radar hybrid sensor and the Vantage Radius a radar 

detector.  

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards.  

INSTALLATION REQUIREMENTS: Camera mounting over center of monitored lanes is ideal, with 

minimum height of 30 ft. Greater heights may be required to minimize vehicle occlusion when using 
side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Up to 4 sensors   

https://www.iteris.com/products/detection-sensors/vantagenext
https://www.iteris.com/products/detection-sensors/vantagenext
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PRODUCT CAPABILITIES/FUNCTIONS:  

Camera  

• Focal Length 5.4° tele to 50.7° wide  

• 1.0 Lux Minimum Illumination with 3D-DNR Noise Reduction  

• 12x Optical Zoom  

• RJ-45 CAT5 connection  

• No information regarding image resolution is provided  

Video Processor  

• 4 open-collector outputs and 4 inputs per processor card.  

• 128 total outputs /64 total inputs using extension modules  

• Video Output: MPEG-4 and H.264, XGA 1024 X 768  

• Fixed frame rate of 15fps  

TELEMETRY: Ethernet and Wi-Fi  

DATA OUTPUT: Presence, Delay, Extend, Count, CSO (Count, Speed, and Occupancy), Pulse, Demand 

and Passage. SmartCycle and PedTrax modules (described earlier).  

DATA OUTPUT FORMATS:  

• USB A x2 for pointing device and memory   

• HDMI for monitor connection.  

• Standard detector interface   

• SDLC DB15 connector  

  

Vantage Apex (preliminary data)  

https://www.iteris.com/products/detection-sensors/vantage-apex   

  

GENERAL DESCRIPTION OF EQUIPMENT: This info is based on news releases and product 

advertisement. No datasheet is still available for this product.  

Vantage Apex is Industry’s First 1080p HD Video and 4D/HD Radar Sensor with Integrated AI 

Algorithms. The AI-powered smart sensor delivers unmatched detection, tracking and classification 

accuracy of vehicles, pedestrians and cyclists, as well as HD video display for traffic management 

center monitoring. Vantage Apex identifies objects using Iteris’ powerful AI video analytics, extensive 

image library, highperformance GPU/CPU-based computing, machine learning and neural network 

algorithms. This enables the high-precision and detailed classification of many different vehicle types 

and vulnerable road users, such as pedestrians and cyclists. Using forward-fire radar technology to 

https://www.iteris.com/products/detection-sensors/vantage-apex
https://www.iteris.com/products/detection-sensors/vantage-apex
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virtually eliminate occlusion, the Vantage Apex hybrid sensor uses industry-leading 4D/HD radar 

technology with a field of view exceeding 600 feet. The Vantage Apex system enables decision-zone 

safety functions, collision avoidance and advanced lane-by-lane detection that delivers precise traffic 

detection and data.  

SENSOR TECHNOLOGY AND CONFIGURATION:   

• Machine vision – video image processing, object classification and tracking.  

• Radar - advanced 4D, high-definition (HD).  

SENSOR INSTALLATION: Sensor installs on existing signal poles, mast arms, and luminaire standards.  

INSTALLATION REQUIREMENTS: Sensor mounting over center of monitored lanes is required with 

minimum height of 30 ft.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: four  

TELEMETRY: Vantage Apex is just the sensor. It requires an Iteris platform in the cabinet to complete 

the system and connect with the rest of the traffic control equipment. It is unclear if and how the 

cabinet hardware are different with ones in the Vantage Next platform. From the online info and 

pictures it looks like that if they are not the same hardware they at least have the same 

communication and data exchange features.  
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 +ITS PLUS  

ITS Plus is a relative newcomer in the vehicle detection arena so very little is known regarding their 

product line. The company sales pitch is that they offer the most cost effective product in the market. 

All the information in this document is taken from the company website.  

“Lightning Series” VIVDS Cards  

https://itsplus3.com/1623-2/   

   

GENERAL DESCRIPTION OF EQUIPMENT: ITS Plus claims to provide a camera combines both analog 

and HD digital video outputs into a single device. It is designed to work with current analog VIVDS 

detection cards as well as ITS Plus’s next generation digital VIVDS cards. It is unclear how this camera is 

different to other analog video cameras especially since the web site indicates NTSC, an analog video 

format, and the video input. No information was found regarding any digital VIVDS products.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and trip-line technology. This information is assumed based on the offered descriptions as 
well as the offered examples of detector layouts.   

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards.  

INSTALLATION REQUIREMENTS: Camera mounting over center of monitored lanes is ideal, with 

minimum height of 30 ft. Greater heights may be required to minimize vehicle occlusion when using 
side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: Unknown, evidence of at least 5 

lanes although the VIVDS card shows only 4 detector outputs.  

PRODUCT CAPABILITIES/FUNCTIONS:  

Camera  

• 1080p Analog or Digital  

• 1/3 inch 2.1MP CMOS  

• 20x Digital Zoom  

• BNC Less Connector with coax cable  

• Single lens camera with “never clean” lens cover  

Video Processor  

• 1 or 2 channel video processors with NTSC input via BNC  

• 4 relay outputs  

• 30 detection zones with flexible logic for mapping to relay outputs  

• 128 total outputs /64 total inputs using extension SLDC module  

https://itsplus3.com/1623-2/
https://itsplus3.com/1623-2/
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• TS1, TS2, ATC, 170/2070 compatible  

TELEMETRY: programming via USB mouse and analog video monitor or a Laptop PC  

DATA OUTPUT: Presence and Count.   
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Miovision  

Founded in 2005 as a traffic solution company, Miovision was originally created by three University of 

Waterloo friends with a shared vision: to help cities make smarter urban planning decisions by 

improving their understanding of traffic flow. Miovision has since grown into a global leader of “Smart 

City” technology. Initially Miovision started as a developer of a traffic management platform designed 

to collect in-house and outsourced traffic data for advanced traffic signal operations. The company's 

platform offers an easy way to request, deliver and analyze traffic data, all in one place. Only recently 

Miovision entered the arena of real-time detection.  

TrafficLink Platform  

https://miovision.com/trafficlink/video-detection   

   

GENERAL DESCRIPTION OF EQUIPMENT: The Miovision product resembles the one by Gridsmart in 

the fact that is also based on a single fish-eye lens camera placed as close as possible to the center of 

the intersection. One 4k camera captures the entire intersection. As of December 2021, some of the 

parts of the TrafficLink platform have been redesigned. Specially, before December 2021 the 

intersection hardware comprise of the Smartview camera, delivering IP based video to the SmartSense 

Graphic processor unit which provided data to SmartLink module that connects to the signal 

controller. In December 2021 Miovision launched Miovision Core® – a powerful new hardware 

platform for intersections  capable of supporting the next generation of software-based solutions. It 

offers twice the processing power as Miovision SmartLink™ and provides new capabilities to run more 

sophisticated software solutions at the intersection. Adding Miovision Core DCM – a small plug-in 

module – increases compute capability by over 50%, allowing it to support complex computer vision 

applications such as video detection and multimodal traffic counts.   

As per the companies press release, Miovision Core will ultimately supersede Miovision SmartLink™ 

and Miovision SmartSense™ although the company states that they will continue to support SmartLink 

and SmartSense and offer refinement and improvements. The information in the rest of this section 

apply to the new Miovision Core product.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – Object detection and Tracking: 

(motor)bike, small vehicles (car, van), big vehicles, and pedestrians.  

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards.   

INSTALLATION REQUIREMENTS: Bucket truck to mount camera. Minimum camera mounting height is 

at least 30 ft. and preferably within 75ft of the intersection center.  

  

https://miovision.com/trafficlink/video-detection
https://miovision.com/trafficlink/video-detection
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Miovision Core® Hardware   

• NVIDIA ProcessorCPU: Quad-core ARM® A57 @ 1.43 GHz GPU: 128-core Maxwell  

• Mass storageBuilt-in 240GB solid state  

• Wireless connectivity  

o CellularLTE Cat 4 bands B2, B4, B5, B12, B13, B14, B66, B71  

o Location servicesGPS, GLONASS  

o Wi-Fi 802.11 a/b/g/n Restricted to customer-authorized  communications  

• Inputs and Outputs  

o 1 x 10/100/1000 Ethernet WAN port  

o 2 x 10/100/1000 Ethernet LAN ports   

o 3 x 10/100/1000 Ethernet LAN ports with PoE  

o 1x SDLC port (proprietary connector, DB15 adapter included)  

o 2 x EIA RS-232 over RJ45 interface (cable included)  

o 1 x USB-A port  

o 4 x +5V open drain I/Os  

o 8 x NEMA compliant I/Os  

Miovision Core® DCM Hardware plugin module  

• DCM NVIDIA Processor CPU:   

o 6-core NVIDIA Carmel ARM® 64-bit   

o GPU: 384-core NVIDIA Volta™ GPU with 48 Tensor Cores  

• Inputs and Outputs (additional to the existing)  

o Detector I/O  

▪  8 x NEMA compliant I/Os (fail passive)  

▪  16 x NEMA compliant I/Os (fail active)  

    

Oriux – Peek   

Peek Traffic Corporation provides transportation management systems in North America. It offers 

data/AVCC products; traffic control products, including cabinets; IQ Central, a central traffic network 

management software; ATC Link, a controller management software; Viper, a service-based software 

platform, TOPS, a traffic, operations, and planning software; and Spinnaker ATMS, a Web-based 

advanced traffic management system software. The company also provides traffic signal products, 

such as vehicle signals, pedestrian signals, countdown pedestrian signals, audible pedestrian signals, 

lenses and visors, back plates, and loop detection products; video detection products, including video 

detection cards, video traffic detection cameras, camera interface panels, shelf mounted detector 

racks, rack power cards, and channel extender cards; and uninterruptible power supplies (UPS) 

products, such as UPS units and UPS cabinets.   
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The company was founded in 1888 and is based in Houston, Texas. As of July 25, 2008, Peek Traffic 

Corporation operates as a subsidiary of Signal Group, Inc. and as of February of 2020, Peek Traffic and 

its parent Signal Group have changed their names to Oriux in a rebranding exercise.   

VideoTrak® IQ  

https://www.oriux.com/videotrak-iq.html    

  

GENERAL DESCRIPTION OF EQUIPMENT: VideoTrak is designed for use in fully actuated vehicle 

detection systems for intersection control and for traffic surveillance systems. Detection features are 

compatible with NEMA TS-1/TS-2, Type 170/179, Type 2070 and ATC controllers. Video Processing 

Module supports RS-170, NTSC, CCIR or PAL format CCD cameras.  

SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and tripline technology.  

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards. 

Machine processor installs in controller cabinet.  

INSTALLATION REQUIREMENTS: Bucket truck to mount sensor. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 30 ft. Greater 

heights may be required to minimize vehicle occlusion when using side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: See below  

PRODUCT CAPABILITIES/FUNCTIONS:  

• Available in two models, which support up to 4 or 8 cameras with as many as 32 detection zones 

per camera − providing up to 128 or 256 detection zones, depending on model.  

• Vehicle counting and classification.  

• Collection of traffic statistics such as number of vehicles (volume/counts), average speed 

(mph/kph), lane occupancy (% time lane is occupied), density (volume/speed), headway (avg. 

in seconds), delay (avg. delay in sec), queue length (ft/m), vehicle length (avg. in ft/m).  

COMPUTER REQUIREMENTS: Standard laptop or notebook computer for detection zone setup.  

DATA OUTPUT FORMATS:   

• SDLC communication port allows direct connection for all TS2 environments which also makes 

available up to 64 output assignments and 16 phase color inputs.  

• Two USB 2.0 connections allow one to be used for a mouse while the other is being used to save 

system configurations via a Flash Drive. It can also be used to upload new Firmware and 

Upgrades as they become available.  

https://www.oriux.com/videotrak-iq.html
https://www.oriux.com/videotrak-iq.html
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• Aux I/O connector provides an additional 8 outputs, 4 inputs, and allows for direct wiring to 

cabinet terminals or connection to extender cards for routing detectors to other rack slots.  

• Ethernet Port – Units are “IPAddressable” allowing video streaming for hi quality remote 

monitoring and configuration adjustments.  

• A three-color status LED for each video channel.  

• Edge output status LED’s 1 – 4.  

• Standard RCA.  

    

VideoTrak XCam™  

https://www.oriux.com/vehicle-video-detection.html   

  

GENERAL DESCRIPTION OF EQUIPMENT: VideoTrak XCam™ is Oriux and Citilog's newest video 

detection technology combined into one easy-to-use and powerful video detection product. Pairing 

the latest technology of Oriux, VideoTrak family of video detection products and the innovative XCam 

smart camera from Citilog, the VideoTrak XCam™ is the future of ITS video detection. It supports up to 

8 XCam cameras per Cabinet Interface Unit (CIU) allowing unparalleled modularity and compact space-

saving installations in NEMA or CALTRANS style cabinets. VideoTrak XCam™ centralizes the set-up and 

configuration of all connected cameras without the need for additional wiring or a PC computer- Just a 

mouse and a monitor!  

https://www.oriux.com/vehicle-video-detection.html
https://www.oriux.com/vehicle-video-detection.html
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SENSOR TECHNOLOGY AND CONFIGURATION: Machine vision – video image processing, pixel 

tracking, and tripline technology.  

SENSOR INSTALLATION: Camera installs on existing signal poles, mast arms, and luminaire standards. 

Machine processor installs in controller cabinet.  

INSTALLATION REQUIREMENTS: Bucket truck to mount sensor. Camera mounting over center of 

monitored lanes provides optimum performance. Minimum camera mounting height is 30 ft. Greater 

heights may be required to minimize vehicle occlusion when using side-mounted cameras.  

MAXIMUM NUMBER OF LANES MONITORED SIMULTANEOUSLY: See below  

PRODUCT CAPABILITIES/FUNCTIONS:  

• Available in two models, which support up to 4 or 8 cameras with as many as 32 detection zones 

per camera − providing up to 128 or 256 detection zones, depending on model.  

• Vehicle counting and classification.  

• Collection of traffic statistics such as number of vehicles (volume/counts), average speed 

(mph/kph), lane occupancy (% time lane is occupied), density (volume/speed), headway (avg. 

in seconds), delay (avg. delay in sec), queue length (ft/m), vehicle length (avg. in ft/m).  

• Video streaming capability  

COMPUTER REQUIREMENTS: none. Web Interface  

DATA OUTPUT FORMATS:   

• SDLC communication port allows direct connection for all TS2 environments which also makes 

available up to 64 output assignments and 16 phase color inputs.  

• Two USB 2.0 connections allow one to be used for a mouse while the other is being used to save 

system configurations via a Flash Drive. It can also be used to upload new Firmware and 

Upgrades as they become available.  

• Aux I/O connector provides an additional 8 outputs, 4 inputs, and allows for direct wiring to 

cabinet terminals or connection to extender cards for routing detectors to other rack slots.  

• Ethernet Port – Units are “IPAddressable” allowing video streaming for hi quality remote 

monitoring and configuration adjustments.  

• A three-color status LED for each video channel.  

• Edge output status LED’s 1 – 4.  

• HDMI video out  
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Introduction  

The goal of Task 4 was to select intersections with NIT for vehicle detection and prepare the 

equipment/methods for collecting video and data from the field. The aim of Task 5 was to initiate 

data collection, specifically video of the operation of the selected sites starting on the winter 

season of 2021-2022. This report is the combined deliverable for both tasks.  

During the course of the effort, in collaboration with the Mr Derek Lehrke it became clear that 

the most efficient and, at least in the case of MnDOT, allowed way to collect the same video the 

NIT detectors are using is to target MnDOT owned signals that are connected to the fiber 

backbone. Video from such intersections can be streamed to the MnDOT cloud media provider 

(Wowza) and from there stream it to the public or at least to whomever has the right stream 

address, in the case of the project a specifically designed video recording server. In addition to 

the video, given that these intersections are in the MnDOT fiber network, high-resolution signal 

data are also been recorded by MnDOT and will be made available to the research team. Because 

of delays in successfully establishing the streams and working with MnIT in troubleshooting the 

connections with the cloud service, in order not to lose much of the winter season weather 

conditions, we opted to start recording on all available sites.   

This report presents the currently selected sites along with their geometric characteristics, as 

seen from the NIT video. In total, 33 intersections are currently been recorded. Some of these 

intersections are covered by more than one camera due to geometry complexity or size. Barring 

changes in the data analysis planned in the project, the project budget cannot handle the effort 

of fully analyzing all approaches on all 33 intersections. Given that video recording is the cheap 

part of the process, we opted to record all of them and finalize the ones that will be fully analyzed 

later in the project with the help of the TL and TAP.  

Proposed Sites  

Table 1 presents a summary of the currently proposed sites. The NITs covered include Autoscope 

Vision, Iteris Vantage Next, Gridsmart, and one site with Miovision. These sites have been 

recorded since December 2021 and up to now we have captured at minimum three major snow 

events and one ice storm. The remainder of the report has screenshots from the recorded video 

on each site to aid in the discussion regarding which sites have priority to be analyzed in greater 
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depth. It is interesting to note that at least in the case of the Autoscope Vision systems, the 

device, when it detects that image quality is not good for accurate enough (unknown threshold) 

detection, it deactivates the affected detectors, which turn red in the video feed. An example of 

this can be seen in the intersection of MN-7 and Blake Rd on page 12. Iteris Vantage Next seems 

to also have a similar feature (example cyan colored detectors on page 6) although we still need 

to verify its operation since by design this system has multiple detectors on each lane and not all 

of them go off-line. For these systems, all recorded video from all intersections will be used to 

produce relevant performance statistics since extraction is relatively simple.   

 

Major Road  Minor Road  Detection system  Approaches  Max/Min  

Lanes  

I-35E (East Ramp)  Cliff Road  Iteris Vantage Next  3  3/1  

I-35E (West Ramp)  Cliff Road  Iteris Vantage Next  3  3/1  

MN-36 (North Ramp)  White Bear Ave  Iteris Vantage Next  3  3/2  

MN-36 (South Ramp)  White Bear Ave  Iteris Vantage Next  3  3/2  

MN-47 (ped)  85th Ave  Iteris Vantage Next  1  3  

MN-47  Mississippi St  Miovision  4  4/4  

MN-51  Roselawn Ave  Gridsmart  4  4/2  

I-494  Flying Cloud Dr  Gridsmart  3  4/4  

I-494 (North Ramp)  Pilot Knob Rd  Iteris Vantage Next  3  3/2  

I-494 (Camera 1)  
Tamarack Rd  Gridsmart  4  4/3  

I-494 (Camera 2)  

MN-51  County Road C2  Iteris Vantage Next  4  4/2  

MN-62 (North Ramp)  France Ave  Autoscope Vision  3  3/2  

MN-62 (South Ramp)  France Ave  Autoscope Vision  3  3/2  

MN-65  41st Ave  Gridsmart  4  4/1  

MN-65  81st Ave  Autoscope Vision  4  5/2  
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MN-7  Blake Rd  Autoscope Vision  4  4/4  

MN-65 (East side)  Viking Blvd  Gridsmart  3  3/1  

MN-65 (North Uturn)  Viking Blvd  Gridsmart  2  2/2  

MN-65 (South Uturn)  Viking Blvd  Gridsmart  2  2/2  

MN-65 West Side)  Viking Blvd  Gridsmart  3  3/1  

I-694 (North Ramp)  East River Rd  Autoscope Vision  4  2/1  

I-694 (South Ramp)  East River Rd  Autoscope Vision  4  2/1  

MN-77 (East Ramp)  Cliff Road  Autoscope Vision  3  3/2  

MN-77 (West Ramp)  Cliff Road  Autoscope Vision  3  3/2  

MN-97 (Camera 1)  
Hornsby St  Gridsmart  4  4/3  

MN-97 (Camera 2)  

County Road 81  John Deere Ln  Autoscope Vision  4  4/1  

County Road 81  Industrial Blvd  Autoscope Vision  4  4/3  

County Road 81  Memorial Dr  Autoscope Vision  4  4/2  

US-12 (North Ramp)  Carlson Pkwy  Autoscope Vision  4  4/3  

US-12 (South Ramp)  Carlson Pkwy  Autoscope Vision  3  3/2  

Carlson Pkwy  Twelve Oaks Ctr Dr  Autoscope Vision  4  4/3  

US-12 (North Ramp)  CSAH-101  Autoscope Vision  3  3/2  

US-12 (South Ramp)  CSAH-101  Autoscope Vision  3  3/2  

County Road 144  James Rd  Autoscope Vision  4  4/3  

County Road 144  Northdale Blvd  Autoscope Vision  4  4/2  

County Road 144  Rogers High Sc Rd  Autoscope Vision  4  3/2  
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Red = Autoscope, Yellow = Iteris, Green = Gridsmart, Light Green = Miovision  

    

I-35E and Cliff Road (East and West Ramps)  
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MN-36 and White Bear Ave (North and South Ramps)  
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MN-47 and 85th Ave (One approach with Ped crossing)  
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MN-47 and Mississippi St  
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MN-51 and Roselawn Ave  

  

  

I-494 and Flying Cloud Dr  
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I-494 and Pilot Knob Rd (North Ramp)  
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MN-51 and County Road C2  

  

  

MN-65 and 41st Ave  
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MN-62 and France Ave (North and South Ramps)  

  

  

  

    

MN-65 and 81st Ave  
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MN-7 and Blake Rd  
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I-694 and East River Rd (North and South Ramps)  

  

  

  

    

MN-77 and Cliff Road (East and West Ramps)  
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D-16 

County Road 81 and John Deere Ln  

   

    

County Road 81 and Industrial Blvd  
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County Road 81 and Memorial Dr  

   

    

US-12 and Carlson Pkwy (North and South Ramps)  
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Carlson Pkwy and Twelve Oaks Ctr Dr  
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US-12 and CSAH-101 (North and South Ramps)  

  

  

  

    

County Road 144 and James Rd  
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County Road 144 and Northdale Blvd  

   

    

County Road 144 and Rogers High School Rd  
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Problem Description  

The Minnesota Department of Transportation (MnDOT) has worked to deploy Non-Intrusive 

Detection Technologies (NIT) for vehicle detection at intersections to detect cars, bikes, and 

pedestrians. They have been used to alert other drivers and allow the traffic signal to modify timing 

to serve the immediate traffic needs better. The main goal of this project is to evaluate the 

operational performance and costs of the various technologies deployed by MnDOT at intersections 

around the Twin Cities Metropolitan Area. The research team will accomplish this goal by evaluating 

the performance of these NIT under various conditions.   

  

The aim of Task 6 is to continue on Task 5 and finalize data collection, specifically for videos of the 

operation of the selected sites starting in the winter season of 2021-2022. This document presents 

the selected and collected datasets collected by the research team and their plans for using them to 

address the overall project goal. Including video data, the datasets collected by the research team 

have been broken down into three sections by data type; Traffic, Weather, and Geography. In 

collecting these datasets, the research team hopes to evaluate the performance of the detection 

technologies used by the cameras under various environmental conditions. Once we have completed 
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the evaluation, we will submit a proposal to help MnDOT and Local Road Research Board (LRRB) 

members select the most appropriate technology from deployed NIT for a given location and 

estimate the effort and cost of maintaining each system year-round in Minnesota.  

  

This document is structured as follows. Section 2 provides an overview of the types and sources of 

the data and the research team's methods to collect and analyze the data. Section 3 overviews the 

research team’s initial data analysis methods and results. Section 4 explains the future steps for 

further data analysis and how the research team plans to meet the overall project goal.  

Data Types and Sources  

This section describes the datasets we have collected and the methods used to prepare them. Below 

we describe their source, attributes, spatial coverage, temporal coverage, resolutions, any 

justifications for why these data sources were selected, and preprocessing steps. We categorize the 

data sources into traffic (Section 2.1), weather (Section 2.2), and geographic (Section 2.3) data.  

Traffic Data  

Traffic Camera Data  

Summary: The Traffic Camera Data is video data collected from the traffic cameras around the Twin 

Cities Metropolitan Area. MnDOT provides the data and contains the video recordings from traffic 

cameras in *.mp4 format. The research team will use the video data to look for detection failures of 

the cameras and help confirm failures in other NITs.  

Data Source: MnDOT provides 39 cameras in the Twin Cities Metropolitan Area, with traffic 

camera names assigned to each camera.   

Attributes: Camera Name, Latitude, Longitude, Link (Google Maps) (Table 1). The camera name is a 

designation given by MnDOT and contains information about the intersecting streets, the camera 

technology used, and the ramp direction (if next to a highway). The Latitude, Longitude, and the Link 

of Google Maps reference the location of each camera (this process is outlined in the Spatial 

Coverage section below) and were identified by the research team using Google Maps.  

Spatial Coverage: MnDOT provides 39 cameras named after camera locations and types covering 

the Twin Cities Metropolitan Area, including four counties or 13 cities. The research team collected 

the point geographic coordinates of each camera location by searching the road intersection on 

Google Maps. Take “35e_cliff_eramp_iteris” as an example. We searched “I- 

35E” and “Cliff” on Google Maps and found the road intersection of “I-35E” and “Cliff Rd” and 

acquired the geo-coordinates on the east ramp. “Iteris” refers to the camera type. After removing 
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the cameras that could not be accurately located using this process, we saved the 31 individual 

cameras (No.1- No.31 in Table 1) with geographic coordinates for further sampling and analysis 

(Figure 1).  

Collected Temporal Coverage: All camera locations were extracted on December 31, 2022.  

Camera recordings were collected from 11/22/2021 to 05/08/2023  

Collected Spatial Coverage: Twin Cities Metropolitan Area, covering four counties  Why we 

collected these data: Collecting this data will help the research team analyze traffic patterns 

throughout the Twin Cities Metropolitan Area.   

Point Locations:  

No.  Camera Name  Type  Latitude  Longitude  Link (Google Maps)  

1  35e_cliff_eramp_iteris  iteris  44.790136  -93.198956  https://goo.gl/maps/24skT2KbrnrMoU1JA  

2  35e_cliff_wramp_iteris  iteris  44.790131  -93.205099  https://goo.gl/maps/HZ2SHM65K83eTTog77  

3  36_whitebear_nramp_iteris  iteris  45.012665  -93.020928  https://goo.gl/maps/KieTBYXEXENGR6dY9  

4  36_whitebear_sramp_iteris  iteris  45.010636  -93.022571  https://goo.gl/maps/zgHTW9FXs4WwYts988  

5  47_85th_Iteris_Stream1  iteris  45.125053  -93.264553  https://goo.gl/maps/A48DyvcpYnLMF29p8  

6  

47_Mississippi_Movision_Stream 

3  movision  45.086136  -93.263535  https://goo.gl/maps/kV5jmgUQ26DopU9q7  

7  494_flyingcloud_sramp_gridsmart  gridsmart  44.861405  -93.425593  https://goo.gl/maps/hjjbYwgqjXQGMmkD6  

8  494_pilotknob_nramp_iteris  iteris  44.861479  -93.167119  https://goo.gl/maps/KTBLqUaRBo45sv9V7  

9  51_crc2_iteris  iteris  45.027917  -93.167081  https://goo.gl/maps/1VwBnov8FEq7tvkS77  

10  62_france_nramp_vision  vision  44.887507  -93.328961  https://goo.gl/maps/AA2CmQ5MdAqmbCRh9 

 

11  62_france_sramp_vision  vision  44.886547  -93.328982  https://goo.gl/maps/P31VNKuaC9LCvqnn7  

12  65_41st_gridsmart  gridsmart  45.042744  -93.247337  https://goo.gl/maps/SEp3jd6vY7UHZvCKA  

13  65_81st_Vision_Stream1  vision  45.11504  -93.241732  https://goo.gl/maps/vTJozXz3D2wy8GLY9  

14  694_eriver_nramp_vision  vision  45.069585  -93.278772  https://goo.gl/maps/LAGPMU2MyM6Soepk7  

15  694_eriver_sramp_vision  vision  45.068929  -93.279158  https://goo.gl/maps/ZKiHcteNBToFauu47  

16  77_cliff_eramp_vision  vision  44.790226  -93.21963  https://goo.gl/maps/cnTfPvzrihw4eEgm9  

https://goo.gl/maps/24skT2KbrnrMoU1JA
https://goo.gl/maps/24skT2KbrnrMoU1JA
https://goo.gl/maps/HZ2SHM65K83eTTog77
https://goo.gl/maps/HZ2SHM65K83eTTog77
https://goo.gl/maps/KieTBYXEXENGR6dY9
https://goo.gl/maps/KieTBYXEXENGR6dY9
https://goo.gl/maps/zgHTW9FXs4WwYts98
https://goo.gl/maps/zgHTW9FXs4WwYts98
https://goo.gl/maps/A48DyvcpYnLMF29p8
https://goo.gl/maps/A48DyvcpYnLMF29p8
https://goo.gl/maps/kV5jmgUQ26DopU9q7
https://goo.gl/maps/kV5jmgUQ26DopU9q7
https://goo.gl/maps/hjjbYwgqjXQGMmkD6
https://goo.gl/maps/hjjbYwgqjXQGMmkD6
https://goo.gl/maps/KTBLqUaRBo45sv9V7
https://goo.gl/maps/KTBLqUaRBo45sv9V7
https://goo.gl/maps/1VwBnov8FEq7tvkS7
https://goo.gl/maps/1VwBnov8FEq7tvkS7
https://goo.gl/maps/AA2CmQ5MdAqmbCRh9
https://goo.gl/maps/P31VNKuaC9LCvqnn7
https://goo.gl/maps/P31VNKuaC9LCvqnn7
https://goo.gl/maps/SEp3jd6vY7UHZvCKA
https://goo.gl/maps/SEp3jd6vY7UHZvCKA
https://goo.gl/maps/vTJozXz3D2wy8GLY9
https://goo.gl/maps/vTJozXz3D2wy8GLY9
https://goo.gl/maps/LAGPMU2MyM6Soepk7
https://goo.gl/maps/LAGPMU2MyM6Soepk7
https://goo.gl/maps/ZKiHcteNBToFauu47
https://goo.gl/maps/ZKiHcteNBToFauu47
https://goo.gl/maps/cnTfPvzrihw4eEgm9
https://goo.gl/maps/cnTfPvzrihw4eEgm9
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17  77_cliff_wramp_vision  vision  44.790237  -93.223347  https://goo.gl/maps/Nbewbfn3NogrT8R18  

18  CR81_deere_visions_stream  vision  45.190296  -93.550583  https://goo.gl/maps/PfWNoeWpfnirCQmh9  

19  CR81_industrial_visions_stream  vision  45.192302  -93.55264  https://goo.gl/maps/2eonYzcRxoWLQRNw7  

20  CR81_memorial_visions_stream  vision  45.188553  -93.547743  https://goo.gl/maps/Et7H17RuUAnQBNZN7  

21  s_12_carlson_nramp_vision  vision  44.972593  -93.469741  https://goo.gl/maps/hQ4cu5LSTH5XYPc36  

22  s_12_carlson_sramp_vision  vision  44.969558  -93.469776  https://goo.gl/maps/uLjGo5sdCg9u8k7v9  

23  s_12_csah101_nramp_vision  vision  44.976979  -93.50213  https://goo.gl/maps/FMrxWoYBbAR7uFB98  

24  s_12_csah101_sramp_vision  vision  44.975039  -93.502106  https://goo.gl/maps/f1bJe7qj2vRihaX1A  

25  s_65_viking_eside_gridsmart  gridsmart  45.319684  -93.235698  https://goo.gl/maps/VqgHYCqXZBmjtcac8  

26  s_65_viking_nuturn_gridsmart  gridsmart  45.322122  -93.236216  https://goo.gl/maps/Si6BYYFV3nM7Cb9dA  

27  s_65_viking_suturn_gridsmart  gridsmart  45.317065  -93.235865  https://goo.gl/maps/DW8TqZkE1ttYz2X56  

28  s_65_viking_wside_gridsmart  gridsmart  45.319638  -93.236458  https://goo.gl/maps/UWS7Cc5PyAj7gRh58  

29  s_cr144_james_vision  vision  45.210298  -93.550016  https://goo.gl/maps/i8dBxffTY6PUi6SJA  

30  s_cr144_northdale_vision  vision  45.210364  -93.55579  https://goo.gl/maps/sQxo359WMDgVNAXj8  

31  s_cr144_rogershighscool_vision  vision  45.210303  -93.546439  https://goo.gl/maps/L2e4wecC3rcx93kf9  

32  169_main_gridsmart  gridsmart        

33  

47_Roselawn_Gridsmart_Stream 

1  gridsmart        

34  494_tamarack_eramp_gridsmart1  gridsmart        

35  494_tamarack_eramp_gridsmart2  gridsmart        

36  65_Blake_Vision_Stream1  vision        

37  97_hornsby_gridsmart1  gridsmart        

38  97_hornsby_gridsmart2  gridsmart        

39  s_12_carlson_twelveoaks_vision  vision        

Table 1: Traffic camera names, locations (latitude, longitude), address, and Google Maps link  

https://goo.gl/maps/Nbewbfn3NogrT8R18
https://goo.gl/maps/Nbewbfn3NogrT8R18
https://goo.gl/maps/PfWNoeWpfnirCQmh9
https://goo.gl/maps/PfWNoeWpfnirCQmh9
https://goo.gl/maps/2eonYzcRxoWLQRNw7
https://goo.gl/maps/2eonYzcRxoWLQRNw7
https://goo.gl/maps/Et7H17RuUAnQBNZN7
https://goo.gl/maps/Et7H17RuUAnQBNZN7
https://goo.gl/maps/hQ4cu5LSTH5XYPc36
https://goo.gl/maps/hQ4cu5LSTH5XYPc36
https://goo.gl/maps/uLjGo5sdCg9u8k7v9
https://goo.gl/maps/uLjGo5sdCg9u8k7v9
https://goo.gl/maps/FMrxWoYBbAR7uFB98
https://goo.gl/maps/FMrxWoYBbAR7uFB98
https://goo.gl/maps/f1bJe7qj2vRihaX1A
https://goo.gl/maps/f1bJe7qj2vRihaX1A
https://goo.gl/maps/VqgHYCqXZBmjtcac8
https://goo.gl/maps/VqgHYCqXZBmjtcac8
https://goo.gl/maps/Si6BYYFV3nM7Cb9dA
https://goo.gl/maps/Si6BYYFV3nM7Cb9dA
https://goo.gl/maps/DW8TqZkE1ttYz2X56
https://goo.gl/maps/DW8TqZkE1ttYz2X56
https://goo.gl/maps/UWS7Cc5PyAj7gRh58
https://goo.gl/maps/UWS7Cc5PyAj7gRh58
https://goo.gl/maps/i8dBxffTY6PUi6SJA
https://goo.gl/maps/i8dBxffTY6PUi6SJA
https://goo.gl/maps/sQxo359WMDgVNAXj8
https://goo.gl/maps/sQxo359WMDgVNAXj8
https://goo.gl/maps/L2e4wecC3rcx93kf9
https://goo.gl/maps/L2e4wecC3rcx93kf9
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Figure 1: Locations of cameras colored by type overlaid on the county map of the Twin Cities 

Metropolitan Area  

Traffic Volume Data  

Summary: The Traffic Volume Data are the time-series traffic flow statistics collected from traffic 

detectors. The data was provided by the MnDOT website [1] in *.csv format. The research team will 

use the traffic volume data to observe abnormal traffic patterns and as a reference to find failure 

cases in the Actuated Signal Data and to understand general traffic trends over time within the Twin 

Cities Metropolitan Area.  

Data Source: MnDOT Automatic Traffic Recorder (ATR) / Weigh-in-Motion (WIM) Yearly Vehicle 

Classification Data [1]   

Attributes: Traffic Recorder ID (station_id), Driving Direction & the Order of Lane (dir_of_travel, 

lane_of_travel), Time (year, month, day, hour), Total Volume (total_intverval_vol), Volume Counted 

by 15 Vehicle Classes (class1, class2, class3, class4, class5, class6, class7, class8, class9, class10, 

class11, class12, class13, class14, class15). The station_id is the traffic recorder ID shown on the 

MnDOT traffic mapping application [10]. The dir_of_travel is the direction of vehicles counted in the 

current record. The lane_of_travel is a numerical representation of the lane the vehicle was detected 

in. The year, month, day, and hour represent the time the data was recorded. The total_intverval_vol 

is the number of vehicles on a road lane (defined in the “lane_of_travel” column (Table 2)) heading in 
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a direction (defined in the “dir_of_travel” column (Table 2)) in a one-hour time slot (defined in the 

“hour” column (Table 2)).  

According to the MnDOT, the 15 types of vehicle classification were based on MnDOT Vehicle 

Classification Scheme [9]. These vehicle classifications are primarily based on the vehicle's length 

detected moving through the intersection. The dataset also records the number of vehicles on a road 

lane (defined in the “lane_of_travel” column (Table 2)) heading in a direction (defined in the 

“dir_of_travel” column (Table 2)) in a one-hour time slot (defined in the “hour” column (Table 2)) by 

vehicle classes. Table 2 is an example of the dataset.  

  

station_id  dir_of_travel  lane_of_travel  year  month  day  hour  total_intverval_vol  class1  class2 

26  1  1  2023  1  1  0  61  0  32  

26  1  1  2023  1  1  1  67  0  19  

26  1  1  2023  1  1  2  43  0  12  

26  1  1  2023  1  1  3  47  0  6  

26  1  1  2023  1  1  4  51  0  5  

  

class3  class4  class5  class6  class7  class8  class 

9  
class10  class1 

1  
class12  class13  class14  class15 

9  0  1  2  0  1  16  0  0  0  0  0  0  

25  3  4  1  0  2  8  0  0  1  1  2  1  

10  0  2  0  2  0  2  0  0  1  8  0  6  

8  0  3  0  0  1  8  1  0  1  11  2  6  

7  1  1  0  0  0  4  0  0  1  19  4  9  

Table 2. Data example of the traffic volume dataset  

  

Spatial Resolution: Point locations of 59 individual traffic recorders  

Spatial Coverage: The State of Minnesota  
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Temporal Resolution: 1 hour  

Temporal Coverage: The available dates downloaded from MnDOT by 4/24/2023 is Jan. 1, 2017 - 

Jan. 31, 2023. The data provider continues uploading more recent data as time goes on. Collected 

Spatial Resolution: Point locations of 19 individual traffic recorders out of the 59 locations in total 

(Selected Traffic recorder IDs: 26, 27, 30, 31, 32, 33, 34, 35, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49)  

Collected Spatial Coverage: Twin Cities Metropolitan Area  

Collected Temporal Coverage: Jan. 1, 2022 - Dec. 31, 2022  

Why we collected these data: As the traffic volume data directly records the number of cars in 

Minnesota, this dataset could provide general information about the traffic volume trend over time. 

This data will help guide data collection and will be used to determine traffic patterns. We intend to 

use this data as a point of comparison for the Actuated Signal Data to evaluate detector 

performance. This data can only partially be relied on due to sections of missing data. Section 3.1.2 

will show three examples of missing data from the year 2022. Figure 2 is a map of all traffic volume 

detectors in the State of Minnesota. Figure 3 shows the selected traffic volume detector distribution.  

Data Preparation: The original dataset is in *.csv format. Our observations show that the dataset is 

well organized and does not include many empty rows. The research team uses Pandas [7] to 

organize the data. The outcome is in the DataFrame format.  

  

Visualization of Traffic Recorder Locations:  

  

Figure 2: Map of Traffic Data detection locations in Minnesota  
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Figure 3: Zoom-in of Figure 2. Only include traffic detection stations within the research study area  

  

Actuated Signal Data  

Summary: The Actuated Signal Data has been collected from intersections with cameras. MnDOT 

provides it in *.csv format in the form of a downloadable link that is emailed to the research team. It 

contains temporal event data on signal changes, maintenance, and traffic passing through the 

intersection. This data will be used to evaluate the performance of NIT in detecting traffic moving 

through an intersection.   

Data Sources: MnDOT; delivered on request   

Attributes: Time (Year, Month, Day, Hour, Minute, Second, Millisecond), Camera ID, Event  

Code, and Event Parameter [2]. Table 3 displays an example sequence of the Actuated Signal  

Data. We observe that the first two entries occur at the same timestamp and have the same Event 

Parameter, 3. Having the same timestamp indicates that the events coincide, and having the same 

Event Parameter indicates that the events occur in the same direction in the intersection. Event 

Codes 10 and 9 correspond to Phase Begin Red Clearence (beginning of a red light) and Phase End 

Yellow Clearence (end of a yellow light) [2]. Several seconds later, we see Event Code 11 on Event 

Parameter 3. Event Code 11 is associated with Phase End Red Clearance (end of red light). This 



E-9 

sequence of events describes the transition from a yellow light to the end of a red light at a specific 

intersection for traffic moving in a specific direction. Events with different Event Parameters do not 

affect one another and can have overlapping sequences.   

Spatial Resolution: Point locations of 31 individual cameras with locations out of the original 39 

Temporal Resolution: The record is updated every time a traffic-related event occurs at an 

intersection (0 milliseconds-10 seconds). The time interval is irregular and varies depending on 

traffic.  

Temporal Coverage: The data has been continuously collected by MnDOT starting 11/2021 

Collected Spatial Resolution: The research team samples 10 cameras out of the original 31 to 

cover more cases of the location distribution, camera types, environmental features, and intersection 

types. Figure 4 displays the locations of the 10 cameras. The selected 10 cameras are:  

1. 694_eriver_nramp_vision  

2. 694_eriver_sramp_vision  

3. 65_81st_Vision_Stream1  

4. 47_85th_Iteris_Stream1  

5. 65_41st_gridsmart  

6. 51_crc2_iteris  

7. s_65_viking_nuturn_gridsmart  

8. s_65_viking_suturn_gridsmart  

9. 77_cliff_eramp_vision  

10. 77_cliff_wramp_vision  

Collected Temporal Coverage: December 20, 2022 - January 10, 2023, June 20, 2022 - July 10, 

2023, January 17, 2023 -  February 7, 2023 (Pending), November 10, 2023 - December 1,  

2023 (Pending)  

Why we collected these data: We sampled these 10 cameras out of the 31 to cover all types of 

camera location distribution (from urban to suburban), 3 camera types (Iteris Vantage Next, 

Autoscope Vision, and Gridsmart), and 6 classes of environmental features, refer to Table 6 (classes 

derived from OpenStreetMaps and categorized on the profile of the surrounding area for each 

camera). This signal data gives precise timestamps for many types of traffic events, such as red lights, 

green lights, car detection, pedestrian detection, maintenance signal, etc., at a very high temporal 

resolution, allowing us to accurately describe the behavior of the signals at intersections. The 

research team has chosen to focus on event codes 82/81 because they directly correspond to cars 

entering and leaving the intersection. These codes will be used to evaluate traffic detector 

performance.  

Data Preparation: MnDOT delivers the data to the research team in CSV format. The data is 

partially unordered and has to be ordered by timestamps using Pandas [7]. The research team also 
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removes any unnecessary event codes that do not pertain to evaluating camera performance. The 

outcome of this preprocessing is a Pandas DataFrame.  

  

Time  Camera ID  Event Code   Event Parameter  

2022-12-01  

04:03:12.400  

596  10  3  

2022-12-01  

04:03:12.400  

596  9  3  

2022-12-01  

04:03:14.900  

596  11  3  

2022-12-01  

04:03:14.900  

596  12  3  

2022-12-01  

04:03:14.900  

596  0  6  

2022-12-01  

04:03:14.900  

596  31  2  

2022-12-01  

04:03:14.900  

596  0  2  

2022-12-01  

04:03:14.900  

596  1  2  

2022-12-01  

04:03:15.000  

596  1  6  

2022-12-01  

04:03:15.000  

596  3  2  
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2022-12-01  596  3  6  

04:03:29.900     

2022-12-01  

04:03:29.900  

596  2  6  

2022-12-01  

04:03:36.200  

596  7  6  

2022-12-01  

04:03:36.200  

596  8  6  

2022-12-01  

04:03:41.700  

596  4  6  

  

Table 3: Sample of Actuated Signal Data   
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Figure 4:  The locations of the subset cameras that will be studied by the research team, colored 

by type and overlaid on the county map of the Twin Cities Metropolitan Area.  

Weather Data  

Weather Station Data  

Summary: The Weather Station Data is data that was collected directly from weather station 

detectors around Minnesota and contains metrics describing temperature, humidity, visibility, etc. 

We use this data to better understand localized weather conditions near the cameras described in 

section 2.1.1.  

Data Source: Weather Real-Time Reports [3] from MnDOT  

Attributes: Air Temp, Max Temp, Min Temp, Wet Bulb Temp, Dewpoint, Surface Temp, Subsurface 

Temp, Humidity, Visibility, Precip Rate, Wind Speed, Wind Direction, Surface Status, Precip Type. 

Table 4 is an example of all attributes the data provides.  

Spatial Resolution: Point locations of 154 distributed individual weather stations in Minnesota 

Spatial Coverage: The State of Minnesota  

Temporal Resolution: Data is collected every 5-10 minutes (the time interval varies depending on 

different weather stations)  
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Temporal Coverage: February, 2022 - present  

Collected Spatial Resolution: Point locations of 10 selected weather stations close to the Twin 

Cities Metropolitan Area from all weather stations in Minnesota Selected Weather stations:  

1. I-35W: Minnesota River  

2. I-35E: Cayuga  

3. I-35E: Little Canada  

4. MN 62: Inver Grove Hts  

5. MN 65: East Bethel  

6. I-494: I-494 @ Minnetonka Blvd  

7. I-494: Maple Grove  

8. US 12: Delano  

9. MN 25: Mayer  

10. US 52: Coates  

Collected Temporal Coverage: June 20, 2022 - July 10, 2022, and December 20, 2022 - January 

10, 2023  

Why we collected these data: This data source has a high temporal resolution compared to 

multiple other available datasets. We sampled these two time slots to cover diverse weather 

conditions (i.e., snow, rain, and fog), extreme weather events, and holidays/workdays/weekdays in 

exactly two seasons half a year apart. In this project, the research team uses weather data to extract 

time-series weather features in the Twin Cities Metropolitan Area to find potential weather factors 

influencing detector performance. Figure 5 is a map of all weather stations in the State of Minnesota. 

Figure 6 shows the selected weather station distribution within the Twin Cities Metropolitan Area. 

Below is a list of weather conditions:  

● Temperature and humidity in summer and winter  

● Precipitation in rain and snow formats in summer and winter  

● Actively snowing vs. ground covered with snow after a snowstorm  

●     Visibility conditions  

Data Preparation: The original dataset is in CSV format. It contains some missing data and multiple 

attributes are not in a suitable format for statistical analysis. Pandas [7] handles empty values, 

converts anomalies, and generates timestamps. The outcome from preprocessing is in DataFrame 

format indexed by timestamp with 18 attribute columns organized by weather stations.  

No.  Station  
EVENTDAT 

E  

WEATHER 

SENSOR  VISIBILITY  HUMIDITY  
PRECIP 

RATE  
WIND 

DIR  
WIND 

SPEED  
MAX 

TEMP  

1  
I-35W MN 

RVR  
06/20/2022 

12:05 a.m.  
WS0086  12.4 mi.  60%  0  SW  6 MPH  97° F  
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2  
I-35W MN 

RVR  
06/20/2022 

12:10 a.m.  
WS0086  12.4 mi.  60%  0  SW  11 MPH  97° F  

3  
I-35W MN 

RVR  
06/20/2022 

12:15 a.m.  
WS0086  12.4 mi.  60%  0  SW  8 MPH  97° F  

4  
I-35W MN 

RVR  
06/20/2022 

12:20 a.m.  
WS0086  12.4 mi.  61%  0  SW  9 MPH  97° F  

5  
I-35W MN 

RVR  
06/20/2022 

12:25 a.m.  
WS0086  12.4 mi.  61%  0  SW  8 MPH  97° F  

6  
I-35W MN 

RVR  
06/20/2022 

12:30 a.m.  
WS0086  12.4 mi.  62%  0  SW  11 MPH  97° F  

  

(table continue…)  

No.  
MIN 

TEMP  

WET  

BULB  

TEMP  

DEW  

POINT  

FRIC 

TION  

SURFAC 

E TEMP  

SURFACE 

STATUS  
SUBSURFA 

CE TEMP  
AIR TEMP  PRECIP TYPE  

1  71° F  74° F  70° F  -  86° F  dry  72° F  85° F  noPrecipitation  

2  71° F  74° F  70° F  -  87° F  dry  72° F  85° F  noPrecipitation  

3  71° F  74° F  70° F  -  86° F  dry  72° F  85° F  noPrecipitation  

4  71° F  74° F  70° F  -  86° F  dry  72° F  85° F  noPrecipitation  

5  71° F  74° F  70° F  -  86° F  dry  72° F  85° F  noPrecipitation  

6  71° F  74° F  70° F  -  85° F  
Trace 

Moisture  
72° F  85° F  noPrecipitation  

Table 4: Examples of weather station data.  
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Figure 5: Map of weather station locations throughout the State of Minnesota   
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Figure 6: Subset of Figure 5. Only includes weather stations within the research study area  

Daily Weather Reports   

Summary: We collected the Daily Weather reports from MnDOT, which contain general 

information about the weather (temperature, precipitation, visibility, etc.) in the Twin Cities 

Metropolitan Area. We collected this data from the World Weather website, which is presented in 

weather report format (Figure 7). We use this data to more easily select which date ranges we should 

observe the NIT on to find blockages or poor performance due to the weather.   

Data Source: Daily Weather Event Reports [4] Attributes: 

Date, Temperature, Weather Events.  

Spatial Coverage: Twin Cities Metropolitan Area  

Temporal Resolution: One day  

Collected Temporal Coverage: January 1, 2022 - December 31, 2022  

Why we collected these data: Initial analysis demonstrates that it is easy to observe the failure 

of detectors in extreme weather conditions. We also collect weather data for normal weather days 

which allows us to isolate more failure cases.   
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Figure 7: Example of data records in February  

Geographic Data  

Summary: We collected the Geographic data using OpenStreetMaps, which contains information 

about spatial features in most places in the world (e.g., roads, buildings, cities, trees, rivers, etc.). We 

used this data to find information about the surrounding environment of the cameras described in 

section 2.1.1.  

Data Source: OpenStreetMaps Fabrik Download Server [5]  

Information of Geographic Data: The data source provides three vector data types: point, line, 

and polygon, which contains natural, traffic, buildings, water, human places, etc. Table 5 shows the 

geographic data geometry types, layers, and attribute descriptions in the original dataset. More 

details are in the help document [6]. The 66 attributes used in this project, which are generated by 

buffer analysis with buffer radiuses 2000 m and 5000 m, are listed in Table 6.  
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Geometry  Layer  Description  

Point  

places  Cities, towns, suburbs, villages,...  

pois  

Points of Interest, therein: Public facilities such as government offices, post office, 
police, ...; Hospitals, pharmacies, ...; Culture, Leisure, ...; Restaurants,  

pubs, cafes, ...; Hotel, motels, and other places to stay the night; Supermarkets, 
bakeries, ...; Banks and atms; Tourist information, sights, museums, ...;  

Miscellaneous points of interest  

pofw  Places of worship such as churches, mosques, ...  

natural  Natural features  

traffic  Traffic related  

transport  Parking lots, petrol (gas) stations, …  

Line  

roads  Roads, tracks, paths, ...  

railway  Railway, subways, light rail, trams, ...  

 
waterways  Rivers, canals, streams, ...  

Polygon  buildings  Building outlines  
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landuse  Forests, residential areas, industrial areas,...  

water  Lakes, ...  

Table 5: Geographic data attributes   

  

Spatial Coverage: OpenStreetMaps provides vector maps of the all of the seven continents of  the 

world.  

Temporal Coverage: The latest version of OpenStreetMaps collected was updated before January 

25, 2023.  

Collected Spatial Coverage: The State of Minnesota  

Why we collected these data: OpenStreetMaps provides detailed geographic information to 

extract rich environmental features of traffic cameras in this study. It is also a widely-used 

opensource geographic data source. In this project, the research team uses geographic data to 

generate the environmental features of each camera to find potential environmental factors 

influencing camera performance.  

Data Preparation: The original dataset is in shapefile format. The errors of OpenStreetMaps mainly 

come from the crowd of volunteer data providers. We assume that the data does not include 

significant errors affecting the calculation. We use Geopandas [8] to reproject the geographic layer, 

initially in a degree-based geographic coordinate system, to a meter-based projected coordinate 

system which is helpful for the measurements in the following steps section. The outcome from 

preprocessing is in GeoDataFrame format with the coordinate reference system of UTM-zone15 + 

WGS84 datum.  

Initial Data Analysis  

Our initial analysis aims to provide a deep understanding of different data sources and show some 

initial results for analyzing datasets. To accomplish this, we identify common patterns within each 

dataset. These common patterns are used to identify correlations between the different datasets. 

Based on these correlative patterns, we can align some of these datasets to demonstrate the 

potential for aggregated analysis toward our overall goal of evaluating the failures of different 

detection technologies.   
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Traffic Data  

3.1.1: Traffic Camera Data  

Analysis process:   

We identified the dates with extreme weather events, including heavy snow, heavy rain, very high 

temperatures (above 30 degrees Celsius), very low temperatures (below -5 degrees Celsius), and 

heavy fog. We then manually watched the video at selected intersections. We focused on the 

cameras with detection results overlaid in the video to directly evaluate how the camera detection 

technology performs under adverse conditions. We also present the initial observations on the signal 

data. This process could identify representative abnormal patterns in camera and inductive loop 

detectors' performance. We can use this as the ground truth for verifying the effectiveness of 

developed anomaly detection methods. We plan to use anomaly detection methods to identify the 

failures of different detection technologies. Also, these representative abnormal patterns could be 

used as references to help understand other abnormal patterns better.   

  

Below is a list of selected extreme weather events:  

1. 2023 Jan 13th-17th normal conditions in the winter.   

2. 2022 Feb 14th heavy intensive rain.  

3. 2022 Mar 22nd heavy intensive rain.   

4. 2022 Mar 27th low night temp.   

5. 2022 Mar 30th rain and snow.   

6. 2023 Mar 16th high night temp.   

7. 2023 Jan 1st-7th low night temp, in which Jan 3rd-4th heavy snow.  

8. 2022 May 14th  thunderstorm with rain   

9. 2022 May 25th  heavy intensive rain   

10. 2022 Jun 15th heavy intensive rain   

11. 2022 Jun 28th thunderstorm with rain   

12. 2022 Jul 7th, 23rd thunderstorm with rain   

13. 2022 Nov 17th-20th low day temp  

14. 2022 Dec 18th-26th  low day temp  

  

Data Interpretation:   

One notable characteristic of the camera video is that computer vision technology has been applied 

in cameras to detect cars entering and leaving zones in the intersections. Some of these camera 

detectors have visual indicators represented by red and green boxes (for the interaction zones) along 

with small red circle indicators (for entering and leaving) (Figure 8). Other factors (e.g., weather 
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conditions) could affect these detectors' performance. Below are some examples of how the 

performance is affected by different weather conditions:  

1) Camera is affected by heavy snow.  

 

 

Figure 8: Image of camera affected by heavy snow.  

When the cameras encounter some issue (e.g., poor conditions caused by bad weather) and cannot 

work, all the detected areas (red rectangles and red dots) stay red consistently until the poor 

conditions resolve. When the cameras function well, the (green) rectangle area will be activated once 

cars enter the area. Simultaneously, a red dot (e.g., CH20 in the left plot of Figure 8) is activated and 

remains on as long as a car remains in the area. If a car leaves this area, another red dot (e.g., CH41) 

will be activated for a short period. Corresponding traffic lights can also be observed.   

  

2) Camera is affected by fog  

All the camera detections fail due to the fog interference on the perception ability in Figure 9.   



E-22 

  

Figure 9: Image of camera affected by fog.  

3) Camera is affected by heavy rain  

The detection areas marked by the green boxes are not activated due to the raindrop (Figure 10). The 

raindrop occluding the camera’s view of this area so that no cars are detected, even though cars 

appear in the detection areas.   

  

         Figure 10: (a) Camera image without rain    (b) Camera image affected by rain  

  

  

Data missing:  

1. Not all the cameras explicitly show the computer-vision-based detection results (e.g., the 

green and red boxes).    

2. We have been missing videos for many days. The recorded dates are in Appendix I.  
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Traffic Volume Data  

Functionality: To find traffic trends over time using the traffic volume data, the research team 

plotted examples of daily traffic volumes at 19 different locations, as shown in Figure 11 (a-c). 

MnDOT collects this data from subsurface pressure sensors installed under the pavement at specific 

intersections. We can use this data to understand the properties of traffic volume over time. Also, we 

can compare this volume data with traffic volume detected by cameras and inductive loops to 

evaluate the detection performance.   

  

  (a) Station 1977                           (b) Station 233                        (c) Station 11205 Figure 11 (a-c): 

Daily traffic volume for 2022 from different stations.  

Observation:  

1. The trend of traffic volume changes with time and shows seasonal characteristics.  

2. Spatial correlation: The traffic volume trends show distinct patterns across locations if they 

are distant; otherwise, their trends have some similarities.   

3. Large festivals and holidays are usually associated with a sudden decrease in traffic flow.  

Data missing:  

1. We observed missing records at the hour, daily, chunk (i.e., consecutive days), and location 

level (i.e., not all locations have records).  

Actuated Signal Data – detector on/off phases   

Analysis process:  

We check the general trends and study the patterns at different temporal granularities to learn the 

(e.g., second-level patterns, hourly-level patterns, daytime and nighttime patterns, daily patterns, 

weekly patterns, and seasonal patterns). Also, we align the signal data with the camera video to 

study abnormal behaviors. We aim to explore how we can discover abnormal behaviors based on the 

analysis of Actuated Signal Data. We plan to develop methods to monitor how the signal data 

behaves in normal conditions (i.e., the detected number of cars in this signal data is expected to be 

close enough to the number detected by object detection tech from the video we are going to 

develop) and abnormal conditions (i.e., the detected number of cars is inconsistent with the ground 

truth number observed in the video, which usually occurs in the frigid days) in the future.  
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Data Interpretation:   

We focus on the records with the detector on/off (Event Codes 82/81) phases representing a car 

entering and leaving a specific lane (indicated by the event parameter) at an intersection. Figure 12 

(a-d) below are the daily frequency of on-phase 82 (off-phase 81 results in the same plot) at location 

51. We can observe weekly patterns (higher volume on weekdays and lower volume on weekends), 

seasonal patterns (higher volume in summer and lower volume in winter), sudden dese patterns in 

big holidays (e.g., Christmas and new year) and frigid days (i.e., a snowstorm on Jan 3rd-4th). We also 

confirm the daily patterns (higher volume in the daytime and lower volume in the nighttime). Most 

of these patterns are consistent with the general trend in the traffic volume data in section 3.1.2.  

 

   (a) Daily volume in June                             (b) Daily volume in July  

 

   (c) Daily volume in December                             (d) Daily volume in Janurary  

  

Figure 12(a-d): Daily detected traffic (frequency) volumes in different months at interaction 51  

  

When an intersection experiences heavy snow, the detectors are not sensitive enough to detect all 

the cars passing through. Figure 13 (a) below is an example of an intersection on 81st facing south. 

Cars are seen moving through one way of the intersection (with green light) from 14:08:28-14:08:40, 

but there is no record in the actuated signal data (Figure 13 (b)). This indicates the failure of all 

sensors (e.g., camera sensors and inductive loops).    
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Figure 13: (a) A camera image with heavy snow       (b) The corresponding actuated signal data.   

  

Other malfunctions indicate partial failure where some but not all cars are detected. Below is an 

example of this type of behavior (Figures 14 & 15). There are at least 3 cars entering the interaction 

shown in Figure 14 during 14:10:08-14:10:18, but only two 82 (on) phrases are observed in the 

actuated signal data in Figure 15. Note that we only show two ways of the interaction in 14(a)-(d), 

while the signal data records four ways. Even without another two ways, we can still observe there 

are more cars passing than detected cars in Figure 14(a)-(d). It implies that there are several car 

entrances missing.  

  

Figure 14: (a) EB way image at 14:10:08         (b) EB way image at 14:10:18      
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       Figure 14: (c) WB way image at  14:10:08     (d) WB way image at  14:10:18    

  

  

Figure 15: Actuated Signal data in reference to Figure 14  

  

Observations:  

1. Based on Jun.-Jul. and Dec.-Jan. records obtained from MnDOT, we confirmed that  there are 

more detected cars in the summer than in other seasons.  

2. Weekly traffic patterns can be observed (Weekdays vs. Weekends).  

3. Religious and National holidays are often associated with a sudden decrease in traffic.   

4. Heavy snow is associated with a sudden decrease in traffic.  

5. The detector performance is affected by heavy snow. Further analysis is necessary on cold 

days without snow before a determination about temperature affecting performance can be 

made.   
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Missing data:  

1. The expectation is that MnDOT will deliver the majority of the requested actuated signal 

data. Therefore, the research team expects missing data will not be a significant problem.  

2. There are days or hours of data missing in July around the 15th-16th. The research team will 

continue investigating to identify other durations with missing data  

Weather Data  

Weather Station Data  

Date Interpretation: We attempt to find trends in all the weather attributes (specified in the 

“Attributes” section of section 2.2.1 Weather Station Data) over two time ranges, three weeks in 

summer and three weeks in winter. This data could provide information to study how the behaviors 

of detection technologies are affected by different weather attributess at the highresolution level. 

Our initial analysis focuses on the temporal patterns in the original time-series weather dataset. After 

we confirm the detection technologies are affected by extreme weather events, we are interested in 

quantifying the weather events and seeing which level of weather conditions are specified by various 

weather attributes could affect the detection technologies. The research team plots all the weather 

attributes. Below are examples of a sample three-week weather attributes at ten stations (Figure 16-

20).  

  

  

  

Figure 16: Average Air Temp across 10 weather stations by date.  
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Figure 17: Mean air temperature in Minnetonka weather station in the summer   

  

Figure 18: Variance of air temperature in Minnetonka weather station in the summer   

  

Figure 19: Mean air temperature in Minnetonka weather station in the winter  



E-29 

  

Figure 20: Variance of air temperature in Minnetonka weather station in the winter 

Observations:  

1. Air Temperature: Daytime is higher than nighttime. Achieve the highest around 2 PM and the 

lowest around 5 AM.  

2. Surface Temperature: Daytime is higher than nighttime. Achieve the highest around 4 PM 

and the lowest around 7 AM.  

3. Subsurface Temperature: Daytime is lower than nighttime. Achieve the highest around 

midnight and the lowest between 12 PM to 2 PM.  

4. Visibility: Visibility in summer is generally higher than in winter. There is a relatively fixed 

pattern within a day: it achieves the lowest in the morning between 4 AM - 8 AM and 

reaches the highest in the afternoon. Winter visibility shows more significant change over the 

day depending on weather events.  

5. Humidity: The humidity shows a fixed pattern within a day, which achieves the highest 

between 0 AM and 7 AM and the lowest between 2 PM and 6 PM.  

6. Wind Speed: It shows a general pattern within a day. Daytime is higher than nighttime. 

Wintertime has more variance than summertime.  

7. Wet Bulb Temperature: It shows a fixed pattern within a day, which achieves the lowest 

around 6 AM (summer) or 9 AM (winter) and the highest around 6 PM (summer) and 3 PM 

(winter).  

8. The temperature variations of different locations show distinct patterns. Some are stable, 

while others have more sudden changes.  

  

Daily Weather Data  

Method: We collected all the dates with extreme weather events indicated in the Weather Events 

attribute, including heavy rain, heavy snow, very high temperatures, and frigid temperatures. Then, 

we used these event dates to select date ranges to analyze possible detection errors in the actuated 

signal data and the camera data. The results of this analysis can be found in sections 3.1.1 and 3.1.3  
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Geographic Data  

Data Interpretation: To represent the environmental features of cameras in vector space, we 

generated a buffer with a radius of 2,000 meters and 5,000 meters for each camera location. Next, 

we split all the point, line, and polygon geographic layers by attributes and values of attributes. We 

traversed the split layers and calculated the number of points, the total length of lines, and the total 

area of polygons located in each buffer circle.  

Below is the list of 66 buffer statistical attribute results from this procedure (Table 6). We can 

observe two attribute examples across all cameras (Figures 21 & 22). We can also observe the 

number of crossings within a 2000-meter buffer of all 39 cameras (Figure 21) and the total length of 

pathways within a 2000-meter buffer of all 39 cameras (Figure 22).  

  

Data source type  Data source layer  
Feature generated  within 

buffer   

Buffer radius  

2000 m   5000 m   

Polygon  

OSM_building_a  Building area (m2)  ✓  ✓  

OSM_water_a  Water area (m2)  ✓  ✓  

OSM_pofw_a  Religious place area (m2)  ✓  ✓  

OSM_pois_a  Points of Interest area (m2)  ✓  ✓  

OSM_traffic_a  Parking lot area (m2)  ✓  ✓  

OSM_landuse_a  Grass area (m2)  ✓  ✓  

Point  OSM_pois  Point of Interest number  ✓  ✓  
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OSM_transport  Bus stop number  ✓  ✓  

 

 

OSM_traffic  

Road crossing number  ✓  ✓  

Motorway junction number  ✓  ✓  

Turning circle number  ✓  ✓  

Traffic signal number  ✓  ✓  

Stop number  ✓  ✓  

Street lamp number    ✓  

Parking number    ✓  

Bicycle Parking number    ✓  

Polyline  

OSM_railways  Total railway length (m)  ✓  ✓  

OSM_roads  

Total cycleway length (m)  ✓  ✓  

Total motorway length (m)  ✓  ✓  

Total motorway link (m)  ✓  ✓  
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Total service road length (m)  ✓  ✓  

 

  
Total residential road length (m)  ✓  ✓  

Total footway length (m)  ✓  ✓  

Total primary road length (m)    ✓  

Total primary link length (m)    ✓  

Total bridleway length (m)    ✓  

Polyline  OSM_roads  

Total secondary road length (m)  ✓  ✓  

Total secondary link length (m)  ✓  ✓  

Total tertiary road length (m)  ✓  ✓  

Total tertiary link length (m)  ✓  ✓  

Total track road length (m)  ✓  ✓  

Total path road length (m)  ✓  ✓  

Total steps road length (m)    ✓  
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Total trunk road length (m)  ✓  ✓  

Total trunk link length (m)  ✓  ✓  

  
Total pedestrian road length (m)    ✓  

Total unclassed road length (m)  ✓  ✓  

Table 6: Table of 66 buffer statistical attributes retrieved from OSM   

  

Figure 21. The number of crossings within a 2000-meter buffer.  
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Figure 22. The total length of pathways within a 2000-meter buffer.  

4. Next Step (Task 7)  

The research team will develop methods to evaluate the performance of different detection 

techniques by automatically detecting their performance in normal and abnormal weather and traffic 

conditions. We will select representative time points and manually label the data  

(including camera videos and the actuated signal data) for verification. Within the context of this 

project, abnormal conditions are the conditions that could make the detection techniques fail. The 

specific abnormal conditions could be distinct for different detection techniques and locations. For 

the camera, the abnormal conditions (from what we have observed) are extreme weather, including 

heavy snow, heavy rain, and heavy fog. For other detectors, abnormal conditions are frigid days.   

  

Appendix:  

  

 I.  Video data recorded:  

'2021-11-22', '2021-11-23', '2021-11-24', '2021-11-25', '2021-11-26', '2021-11-27', '2021-11-28',  

'2021-11-29', '2021-11-30', '2021-12-01', '2021-12-02', '2021-12-03', '2021-12-04', '2021-12-05',  

'2021-12-06', '2021-12-07', '2021-12-08', '2021-12-09', '2021-12-10', '2021-12-11', '2021-12-12',  

'2021-12-13', '2021-12-14', '2021-12-15', '2021-12-16', '2021-12-17', '2021-12-18', '2021-12-19',  
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'2021-12-20', '2021-12-21', '2021-12-22', '2021-12-23', '2021-12-24', '2021-12-25', '2021-12-26',  

'2021-12-27', '2021-12-28', '2021-12-29', '2021-12-30', '2021-12-31', '2022-01-01', '2022-01-06',  

'2022-01-07', '2022-01-08', '2022-01-09', '2022-01-10', '2022-01-11', '2022-01-12', '2022-01-13',  

'2022-01-14', '2022-01-15', '2022-01-16', '2022-01-17', '2022-01-18', '2022-01-19', '2022-01-20',  

'2022-01-21', '2022-01-22', '2022-01-23', '2022-01-24', '2022-01-25', '2022-01-26', '2022-01-27',  

'2022-01-28', '2022-01-29', '2022-01-30', '2022-01-31', '2022-02-01', '2022-02-02', '2022-02-03',  

'2022-02-04', '2022-02-05', '2022-02-06', '2022-02-07', '2022-02-08', '2022-02-09', '2022-02-10',  

'2022-02-11', '2022-02-12', '2022-02-13', '2022-02-14', '2022-02-15', '2022-02-16', '2022-02-17',  

'2022-02-18', '2022-02-19', '2022-02-20', '2022-02-21', '2022-02-22', '2022-02-23', '2022-02-24',  

'2022-02-25', '2022-02-26', '2022-02-27', '2022-02-28', '2022-03-01', '2022-03-02', '2022-03-04',  

'2022-03-05', '2022-03-06', '2022-03-07', '2022-03-08', '2022-03-09', '2022-03-10', '2022-03-11',  

'2022-03-12', '2022-03-13', '2022-03-14', '2022-03-15', '2022-03-16', '2022-03-17', '2022-03-18',  

'2022-03-23', '2022-03-30', '2022-03-31', '2022-04-01', '2022-04-02', '2022-04-03', '2022-04-04',  

'2022-04-05', '2022-04-06', '2022-04-07', '2022-04-08', '2022-04-09', '2022-04-10', '2022-04-11',  

'2022-04-12', '2022-04-13', '2022-04-14', '2022-04-15', '2022-04-16', '2022-04-17', '2022-04-18',  

'2022-04-19', '2022-04-20', '2022-04-21', '2022-04-22', '2022-04-23', '2022-04-24', '2022-04-25',  

'2022-04-26', '2022-04-27', '2022-04-28', '2022-04-29', '2022-04-30', '2022-05-01', '2022-05-02',  

'2022-05-03', '2022-05-04', '2022-05-05', '2022-05-06', '2022-05-07', '2022-05-08', '2022-05-09',  

'2022-05-10', '2022-05-11', '2022-05-12', '2022-05-13', '2022-05-14', '2022-05-15', '2022-05-16',  

'2022-05-17', '2022-05-18', '2022-05-19', '2022-05-20', '2022-05-31', '2022-06-01', '2022-06-02',  

'2022-06-03', '2022-06-04', '2022-06-05', '2022-06-06', '2022-06-07', '2022-06-08', '2022-06-09',  

'2022-06-10', '2022-06-11', '2022-06-12', '2022-06-13', '2022-06-14', '2022-06-29', '2022-06-30',  

'2022-07-01', '2022-07-02', '2022-07-03', '2022-07-04', '2022-07-05', '2022-07-06', '2022-07-07',  

'2022-07-08', '2022-07-09', '2022-07-10', '2022-07-11', '2022-07-12', '2022-07-13', '2022-07-14',  

'2022-07-15', '2022-07-16', '2022-07-17', '2022-07-18', '2022-07-19', '2022-07-20', '2022-07-21',  
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'2022-07-22', '2022-07-23', '2022-07-24', '2022-07-25', '2022-07-26', '2022-07-27', '2022-07-28',  

'2022-07-29', '2022-07-30', '2022-07-31', '2022-08-03', '2022-08-05', '2022-08-06', '2022-08-07',  

'2022-08-08', '2022-08-09', '2022-08-10', '2022-08-11', '2022-08-12', '2022-08-13', '2022-08-14',  

'2022-08-15', '2022-08-16', '2022-08-17', '2022-08-18', '2022-08-19', '2022-08-20', '2022-08-21', 

'2022-08-22', '2022-08-23', '2022-08-24', '2022-08-25', '2022-08-26', '2022-08-27', '2022-08-28',  

'2022-08-29', '2022-09-14', '2022-09-15', '2022-09-16', '2022-09-17', '2022-09-18', '2022-09-19',  

'2022-09-20', '2022-09-21', '2022-09-22', '2022-09-23', '2022-09-24', '2022-09-25', '2022-09-26',  

'2022-09-27', '2022-09-28', '2022-09-29', '2022-09-30', '2022-10-01', '2022-10-02', '2022-10-03',  

'2022-10-04', '2022-10-05', '2022-10-26', '2022-10-27', '2022-10-28', '2022-10-29', '2022-10-30',  

'2022-10-31', '2022-11-01', '2022-11-02', '2022-11-03', '2022-11-04', '2022-11-12', '2022-11-13',  

'2022-11-14', '2022-11-15', '2022-11-16', '2022-11-17', '2022-11-18', '2022-11-23', '2022-11-24',  

'2022-11-25', '2022-11-26', '2022-11-27', '2022-11-28', '2022-11-29', '2022-11-30', '2022-12-01',  

'2022-12-02', '2022-12-03', '2022-12-04', '2022-12-05', '2022-12-06', '2022-12-07', '2022-12-08',  

'2022-12-09', '2022-12-10', '2022-12-11', '2022-12-12', '2022-12-13', '2022-12-14', '2022-12-15',  

'2022-12-16', '2022-12-17', '2022-12-18', '2022-12-19', '2022-12-20', '2022-12-21', '2022-12-30',  

'2022-12-31', '2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05', '2023-01-06',  

'2023-01-07', '2023-01-08', '2023-01-09', '2023-01-10', '2023-01-11', '2023-01-12', '2023-01-13',  

'2023-01-14', '2023-01-15', '2023-01-16', '2023-01-17', '2023-01-18', '2023-01-19', '2023-01-20',  

'2023-01-21', '2023-01-22', '2023-01-23', '2023-01-24', '2023-01-25', '2023-01-26', '2023-01-27',  

'2023-01-28', '2023-01-29', '2023-01-30', '2023-01-31', '2023-02-01', '2023-02-02', '2023-02-03',  

'2023-02-04', '2023-02-05', '2023-02-06', '2023-02-07', '2023-02-08', '2023-02-09', '2023-02-10',  

'2023-02-24', '2023-02-25', '2023-02-26', '2023-02-27', '2023-02-28', '2023-03-01', '2023-03-02',  

'2023-03-03', '2023-03-04', '2023-03-05', '2023-03-06', '2023-03-07', '2023-03-08', '2023-03-09',  

'2023-03-10', '2023-03-11', '2023-03-12', '2023-03-13', '2023-03-14', '2023-03-15', '2023-03-16',  

'2023-03-17', '2023-03-18', '2023-03-19', '2023-03-20', '2023-03-21', '2023-03-22', '2023-03-23',  

'2023-03-24', '2023-03-25', '2023-03-26', '2023-03-27', '2023-03-28', '2023-03-29', '2023-03-30',  
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'2023-03-31', '2023-04-01', '2023-04-02', '2023-04-03', '2023-04-04', '2023-04-05', '2023-04-06', 

'2023-04-07', '2023-04-08', '2023-04-09', '2023-04-10', '2023-04-11', '2023-04-12', '2023-04-13', 

'2023-04-14'  
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Data Analysis 

Our analysis here aims to provide a deep understanding of different data sources and show the initial 

results for analyzing the collected datasets. To accomplish this, we identify common and valuable 

patterns within each dataset. These patterns help understand the datasets and show their potential 

correlations. Based on these patterns, we can align some of these datasets to demonstrate the potential 

for aggregated analysis toward our overall goal of evaluating the failures of different detection 

technologies. 

Traffic Data 

1.1.1: Traffic Camera Data 

Analysis process: 
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We identify the dates with extreme weather events, including heavy snow, heavy rain, very high 

temperatures (above 30 degrees Celsius), very low temperatures (below -5 degrees Celsius), and heavy 

fog. We then manually watch the video at selected intersections to generate a “gold dataset” for the 

ground truth. We focus on the cameras with detection results overlaid in the video to directly evaluate 

how the camera detection technology performs under adverse conditions. We also incorporate the 

initial observations on the signal data. This process could identify representative abnormal patterns in 

camera and inductive loop detectors' performance. We will use these abnormal patterns as the ground 

truth for verifying the effectiveness of developed anomaly detection methods. We plan to use anomaly 

detection methods to identify the failures of different detection technologies. Also, these representative 

abnormal patterns will be used as references to help understand other abnormal patterns better in the 

next task (Task 8) to produce a final memorandum. After observing the traffic camera data, we noticed 

frame-skipping and long pauses occurring on data collected before November 2022. Traffic camera data 

collected after this point has minimal frame-skipping and pausing issues making this data ideal for our 

future analysis. Therefore, data collected after this date will be the focus of future analysis. 

Below is a list of selected extreme weather events: 

1. 2023 Jan 13th-17th normal conditions in the winter. 

2. 2022 Feb 14th heavy intensive rain. 

3. 2022 Mar 22nd heavy intensive rain. 

4. 2022 Mar 27th low night temp. 

5. 2022 Mar 30th rain and snow. 

6. 2023 Mar 16th high night temp. 

7. 2023 Jan 1st-7th low night temp, in which Jan 3rd-4th heavy snow. 

8. 2022 May 14th thunderstorm with rain 

9. 2022 May 25th heavy intensive rain 

10. 2022 Jun 15th heavy intensive rain 

11. 2022 Jun 28th thunderstorm with rain 

12. 2022 Jul 7th, 23rd thunderstorm with rain 

13. 2022 Nov 17th-20th low day temp 

14. 2022 Dec 18th-26th low day temp 

Data Interpretation: 

One notable characteristic of the camera video is that some computer vision technologies have been 

applied in cameras to detect cars entering and leaving zones in the intersections. Some of these camera 

detectors have visual indicators represented by red and green boxes (for the interaction zones) along 

with tiny red circle indicators (for entering and leaving) (Figure 1). Other factors (e.g., weather 

conditions) could affect these detectors' performance. Below are some examples of how the 

performance is affected by different weather conditions: 1) Camera is affected by heavy snow. 
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Figure 1: Image of camera affected by heavy snow. 

When the cameras encounter some issues (e.g., poor conditions caused by bad weather) and cannot 

work, all the detected areas (red rectangles and red dots) stay red consistently until the poor conditions 

resolve. When the cameras function well, the (green) rectangle area will be activated once cars enter 

the area. Simultaneously, a red dot (e.g., CH20 in the left plot of Figure 9) is activated and remains on as 

long as a car remains in the area. If a car leaves this area, another red dot (e.g., CH41) will be activated 

temporarily. Corresponding traffic lights can also be observed. 

2) Camera is affected by fog 

All the camera detections fail due to the fog interference on the perception ability in Figure 2. 

 

Figure 2: Image of camera affected by fog. 
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3) Camera is affected by heavy rain 

The detection areas marked by the green boxes are not activated due to the raindrop (Figure 3). The 

raindrop occluding the camera’s view of this area so that no cars are detected, even though cars appear 

in the detection areas. 

 

 Figure 3: (a) Camera image without rain. (b) Camera image affected by rain. 

Another notable aspect of the data is that we can observe other boxes farther away from some 

intersections (CH 37, CH 21, CH 26, and CH 32 in Figure 2). These boxes represent loop detectors 

installed in the road. These methods of detecting cars are more reliable than computer vision methods 

because they are not affected by camera occlusion or image quality issues. 

Data missing: 

1. Not all cameras explicitly show the computer-vision-based detection results (e.g., the green and 

red boxes). 

2. The collected video streams could have missing videos for many days. The recorded dates are in 

Appendix I. 

3. Some cameras do not have accurate timestamps, making it difficult to analyze them. 

1.1.2: Traffic Volume Data 

Analysis process: 

We collect daily traffic volumes to find trends over time using the traffic volume data, as shown in 

Figure 4 (a-c). 
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 (a) Station 1977 (b) Station 233 (c) Station 11205 

Figure 4 (a-c): Daily traffic volume for 2022 from different stations. 

To better capture the normal trends of traffic volumes, we conduct a Univariate Time Series Clustering 

using the K-Means method with DTW as distance. We set the sliding window width as 24 hours and the 

sliding window step as 48 hours, meaning that by sampling the traffic volume data series every 48 

hours, each data series consists of 24 hours of data. In this way, we generate 7103-time sequences from 

the original traffic volume data of 2022. The setting of the number of clusters was 12. The clustering 

result is in Figure 5. 

 

Figure 5. The 12 clusters of daily traffic volume of 2022. The red line is the DTW Bary Center Averaging. 

Data Interpretation: 

Observing Figure 5, we can see the red line is the DTW Bary Center Averaging, which is a good 

representation of the average shape of all time series in each cluster. Each of the 12 clusters of the daily 

traffic volume shows different trends and characteristics, representing the different daily traffic volume 
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scenarios in the Twin Cities Metropolitan Area over an entire year. Time series in each category whose 

overall shape differs from the red line indicate potential abnormal traffic conditions. 

1.1.3: Actuated Signal Data – detector on/off phases 

Analysis process: 

The initial analysis of the actuated signal data consists of two parts: the aggregated analysis and the 

separated analysis. The aggregated analysis considers all on/off phases together without differentiating 

their sensor types (camera sensors and inductive loops). In the aggregated analysis, we checked the 

general trends. We investigated their patterns at different temporal granularities (e.g., second-level 

patterns, hourly-level patterns, daytime and nighttime patterns, daily patterns, weekly patterns, and 

seasonal patterns). Also, we align the signal data with the camera video to study abnormal behaviors. 

We explore how we could discover abnormal behaviors based on the analysis of Actuated Signal Data. 

We plan to develop methods to monitor how the signal data behaves in normal conditions (i.e., the 

detected number of cars in this signal data is expected to be close enough to the number detected by 

object detection tech from the video we are going to develop) and abnormal conditions (i.e., the 

detected number of cars is inconsistent with the ground truth number observed in the video, which 

usually occurs in the frigid days) in Task 8. In a separate analysis, we analyze the behavior of sensors 

belonging to the same type. We particularly focus on analyzing inductive loop and camera sensor 

behaviors separately. 

Data Interpretation: 

A. Aggregated analysis: We focus on the records with the detector on/off (Event Codes 82/81) 

phases representing a car entering and leaving a specific lane (indicated by the event parameter) at an 

intersection. Figure 6 (a-d) below shows the daily frequency of on-phase 82 (off-phase 81 results in the 

same plot) at location 51. We could observe weekly patterns (higher volume on weekdays and lower 

volume on weekends), seasonal patterns (higher volume in summer and lower volume in winter), 

sudden decrease patterns in big holidays (e.g., Christmas and new year) and frigid days (i.e., a 

snowstorm on Jan 3rd-4th). We also confirm the daily patterns (higher volume in the daytime and lower 

volume in the nighttime). Most of these patterns are consistent with the general trend in the traffic 

volume data in section 1.1.2. 

 



F-7 

 (a) Daily volume in June (b) Daily volume in July 

 

 (c) Daily volume in Dec. (d) Daily volume in Jan. 

Figure 6: Daily detected traffic (frequency) volumes in different months at interaction 51. 

When an intersection experiences heavy snow, the detectors would not be sensitive enough to detect 

all the cars passing through. Figure 7 (a) below is an example of an intersection on 81st facing south. 

Cars are seen moving through one way of the intersection (with green light) from 14:08:28-14:08:40, 

but there is no record in the actuated signal data (Figure 7 (b)). This indicates the failure of all sensors 

(e.g., camera sensors and inductive loops). 

 

Figure 7: (a) A camera image with heavy snow. (b) The corresponding actuated signal data. 
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Other malfunctions indicate partial failure where some but not all cars are detected. Below is an 

example of this type of behavior (Figure 8). At least three cars entered the intersection in Figure 8 

during 14:10:08-14:10:18, but only two 82 (on) phases are observed in the actuated signal data. Note 

that we only show two ways of the intersection in Figure 8(a)-(d), while the signal data records four 

ways. Even without another two ways, we could still observe more cars are passing than the detected 

cars in Figure 8(a)-(d). This implies that several car entrances were not detected. 

 

 (a) EB way image at 14:10:08 (b) EB way image at 14:10:18 

 

 (c) WB way image at 14:10:08 (d) WB way image at 14:10:18 
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(e) The corresponding actuated signal data 

Figure 8: More cars passing than the detected cars 

Observations: 

1. Based on Jun.-Jul. and Dec.-Jan. records obtained from MnDOT, we confirmed that there are 

more detected cars in the summer than in other seasons. 

2. Weekly traffic patterns (Weekdays vs. Weekends) could be observed on days/weekends with no 

major holidays. 

3. Religious and National holidays are often associated with a sudden decrease in traffic. 

4. Heavy snow is associated with a sudden decrease in traffic. 

5. The detector performance is affected by heavy snow. Further analysis is necessary on cold days 

without snow before a determination about temperature affecting performance can be made. 

Missing data: 

1. We will be able to collect the majority of the requested actuated signal data from MnDOT. 

Therefore, the research team expects missing data will not be a significant problem. 

2. There are days or hours of data missing in July around the 15th-16th. We will continue 

investigating to identify other durations with missing data 

B. Separated analysis: We investigate the behaviors of the inductive loop and camera sensors 

separately. The initial results for our analysis are on the detected volume of on-phase (event code 82) 

on June.-July. 2022 and Dec. 2022, and Jan. 2023. Notably, we count the on-phase with parameters 1-4 

as the inductive loop detection behavior and the on-phase with parameter 17+ as the camera detection 

behavior. Since the camera has more detected lanes than an inductive loop, the detected on-phase 

volume of a camera is much higher than the counterpart of an inductive loop. Nevertheless, their 

general trend is similar over time. Thus, in this analysis, we compare their relative volume trend (i.e., the 

local volume change) instead of the real volume for a fair comparison. However, their abnormal 

behaviors show distinct patterns. For example, there are more sudden drops on Dec. 21st, 2022, and 

Jan. 3rd, 2023, in camera detection (marked by red circles in Figure 9(a)-(d)). We observe heavy snow on 

both days, which significantly affects the visibility and results in a camera malfunction, while the 

inductive loop doesn’t suffer from this. Even though we can usually observe that the camera could 

encounter more sudden drops than an inductive loop, it does not mean an inductive loop always 

performs better than a camera. According to The Basics of Loop Detection [7], the high temperature 

could also negatively impact the inductive loop and cause fake detections. As a result, an inductive loop 

may have a larger volume than reality. On Jun. 21st and Jul. 19th, even though the camera had less 

relative volume (marked by red circles in Figure 9(e)-(h)), we cannot say the camera performed poorly. 

Instead, the marked days are sunny (visibility is excellent), and the temperature is very high. The 

inductive loop may produce fake detections. To confirm this, we need additional analysis by integrating 

analysis from video in the future. 
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 (a) inductive loop in Dec. 2022 (b) camera in Dec. 2022 

 

 (c) inductive loop in Jan. 2023 (d) camera in Jan. 2023 

 

 (e) inductive loop in June. 2022 (f) camera in June. 2022 
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 (g) inductive loop in July. 2022 (h) camera in July. 2022 

Figure 9: Separated analysis on daily detection behaviors of inductive loop and camera. 

Observations: 

1. Based on Jun.-Jul. and Dec.-Jan. records obtained from MnDOT, we confirmed that there are 

more detected cars in the summer than in other seasons. 

2. Weekly traffic patterns (Weekdays vs. Weekends) can be observed when there are no major 

holidays/events. 

3. Religious and National holidays are often associated with a sudden decrease in traffic. 

4. Heavy snow affects the camera more than the inductive loop due to the visibility issue. 

5. High and low temperatures could have negative (but different) impacts on the inductive loop, 

requiring additional confirmation with integrated analysis from video. 

Missing data: 

1. We will be able to collect the majority of the requested actuated signal data from MnDOT. 

Therefore, the research team expects missing data will not be a significant problem. 

2. There are days or hours of data missing in July around the 15th-16th. The research team will 

continue investigating to identify other durations with missing data 

Weather Data 

1.2.1: Weather Station Data 

Analysis process: The dataset includes 11 weather attributes (visibility, humidity, precipitation rate, 

wind speed, max temperature, min temperature, wet bulb temperature, dew point, surface 

temperature, subsurface temperature, and air temperature) collected at ten weather stations. We first 

divide the dataset by season and then generate descriptive statistics to capture the general situation of 

the weather. Table 1 and Table 2 are examples of the descriptive statistics of all of the weather 

attributes in summer and winter. “Count” is the number of not null data records in the dataset, “mean” 
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is the average of all data records, “std” is the standard deviation of all data records, “min” is the 

minimum number of all data records, “25%” is the lower quartile number of all data records, “50%” is 

the median number of all data records, “75%” is the upper quartile number of all data records. At the 

same time, “max” is the maximum number of all data records. 

 VISIBILITY 

(mi.) 
HUMIDITY 

PRECIP 

RATE 
WIND SPEED 

(MPH) 
MAX TEMP 

(° F) 

count 53510 58528 59423 59427 59468 

mean 12.01 0.64 0.30 4.51 85.71 

std 1.72 0.18 6.32 3.74 5.92 

min 0.10 0.21 0.00 0.00 61.00 

25% 12.40 0.50 0.00 2.00 82.00 

50% 12.40 0.65 0.00 4.00 85.00 

75% 12.40 0.78 0.00 7.00 89.00 

max 12.40 1.00 397.80 20.00 100.00 

MIN TEMP 

(° F) 

WET BULB 

TEMP (° F) 
DEW POINT 

(° F) 

SURFACE 

TEMP (° F) 
SUBSURFAC 

E TEMP (° F) 
AIR TEMP 

(° F) 

59468 59468 59468 36080 42087 59468 

64.34 66.84 61.05 87.21 82.21 73.79 

5.57 6.79 7.82 14.38 4.89 8.46 

48.00 47.00 39.00 60.00 72.00 50.00 

61.00 62.00 55.00 76.00 77.00 68.00 

64.00 67.00 62.00 84.00 83.00 74.00 

68.00 71.00 67.00 97.00 86.00 80.00 
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79.00 98.00 81.00 130.00 94.00 100.00 

Table 1. General descriptive statistics of weather attributes data collected in summer (June 20, 2022, to 

July 10, 2022). 

 VISIBILITY 

(mi.) 
HUMIDITY 

PRECIP 

RATE 
WIND SPEED 

(MPH) 
MAX TEMP 

(° F) 

count 62796 61096 62802 62594 62802 

mean 8.20 0.81 0.17 5.15 20.57 

std 4.52 0.11 1.50 4.34 13.38 

min 0.10 0.48 0.00 0.00 -11.00 

25% 3.70 0.72 0.00 2.00 9.00 

50% 10.20 0.82 0.00 4.00 25.00 

75% 12.40 0.91 0.00 7.00 32.00 

max 12.40 1.00 94.00 28.00 40.00 

MIN TEMP 

(° F) 

WET BULB 

TEMP (° F) 
DEW POINT 

(° F) 

SURFACE 

TEMP (° F) 
SUBSURFAC 

E TEMP (° F) 
AIR TEMP 

(° F) 

62802 62802.00 62802 37642 43858 62798 

6.53 13.27 9.33 18.05 27.10 13.90 

14.10 14.28 16.27 12.76 6.22 14.47 

-16.00 -16.00 -22.00 -14.00 12.00 -16.00 

-6.00 0.00 -6.00 7.00 23.00 1.00 

4.00 17.00 12.00 22.00 28.00 17.00 

20.00 26.00 24.00 29.00 33.00 26.00 
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34.00 36.00 38.00 43.00 37.00 40.00 

Table 2. General descriptive statistics of weather attributes data collected in winter (December 20, 

2022, to January 10, 2023). 

Data Interpretation: We attempt to find trends in all the weather attributes over two time ranges, 

three weeks in summer and three weeks in winter. This data could provide information to study how 

the behaviors of detection technologies are affected by different weather attributes at the high-

resolution level. Our initial analysis focuses on the temporal patterns in the original time-series weather 

dataset. After we confirm the detection technologies are affected by extreme weather events, we are 

interested in quantifying the weather events and seeing which level of weather conditions are specified 

by various weather attributes that could affect the detection technologies. The research team plots all 

the weather attributes. Below are examples of a sample three-week weather attribute at ten stations 

(Figure 10-19). 

 

Figure 10: Average Air Temp across ten weather stations by date. 

 

Figure 11. Average visibility trend across ten weather stations in winter. 
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Figure 12. Heatmap of the average visibility across ten weather stations in winter. 

 

Figure 13. Box plot of the average humidity across ten weather stations in summer. 

 

Figure 14. Scatter plot of the average precipitation across ten weather stations in winter. 
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Figure 15. Lag plots of the average wind speed across ten weather stations in summer. 

 

Figure 16. Violin plot of the average surface temperature across ten weather stations in winter. 
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Figure 17. Heatmap of average air temperature across ten weather stations in summer. 

 

Figure 18. Heatmap of the average air temperature across ten weather stations in winter. 
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 (a) Summer (b) Winter 

Figure 19. Lag plots of average air temperature across ten weather stations in (a) summer and 

(b) winter. 

Observations: 

The heatmap explicitly shows how data changes over time and shows very high and low data. The box 

plot shows the descriptive statistics of each weather variable. The scatter plot shows the general trend 

of each weather variable and the outliers. The violin plot shows the distribution and range of each 

weather variable. The lag plot shows the degree of auto-correlation. The closer the data distribution is 

to the upper right and lower left diagonal, the stronger the n-phase lag autocorrelation of the data. 
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1. In all temperature variables (max temperature, min temperature, wet bulb temperature, dew 

point, surface temperature, subsurface temperature, and air temperature), the standard 

deviation in winter is larger than that in summer. The range of temperature also varies more in 

winter. 

2. There is clear autocorrelation in humidity, max temperature, min temperature, wet bulb 

temperature, dew point, surface temperature, and air temperature. The smaller the interval lag, 

the more pronounced the autocorrelation. 

3. The autocorrelation is limited in visibility, precipitation rate, wind speed, and subsurface 

temperature. 

4. In summer, the daily temperature rises and falls in a similar trend, while in winter, the 

temperature varies every few days depending on special weather events such as cold snaps and 

snowstorms. 

Geographic Data 

Analysis process: In task 6, we generated a buffer with a radius of 2,000 meters and 5,000 meters 

for each camera location to represent the environmental features of cameras in vector space. Next, we 

split all the point, line, and polygon geographic layers by attributes and values of attributes. We 

traversed the split layers and calculated the number of points, the total length of lines, and the total 

area of polygons located in each buffer circle. Table 3 lists 66 buffer statistical attribute results from this 

procedure. 

To study how the environment of the camera location impacts the camera performance, the research 

team clusters the 66-dimension feature data of 31 cameras using the Hierarchy Cluster Analysis method. 

The result of the Hierarchy Cluster Analysis is shown in Figure 20. As we decide to have six classes for 

the 31 cameras, each red bounding box represents one camera class. The numbers in the horizontal axis 

represent the camera IDs, which could refer to Table 4 for the camera names. 

Data source type Data source layer 
Feature generated 

within buffer 

Buffer radius 

2000 m 5000 m 

Polygon 

OSM_building_a Building area (m2) ✓ ✓ 

OSM_water_a Water area (m2) ✓ ✓ 

OSM_pofw_a Religious place area (m2) ✓ ✓ 

OSM_pois_a Points of Interest area (m2) ✓ ✓ 
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OSM_traffic_a Parking lot area (m2) ✓ ✓ 

OSM_landuse_a Grass area (m2) ✓ ✓ 

 

Point 

OSM_pois Point of Interest number ✓ ✓ 

OSM_transport Bus stop number ✓ ✓ 

OSM_traffic 

Road crossing number ✓ ✓ 

Motorway junction number ✓ ✓ 

Turning circle number ✓ ✓ 

Traffic signal number ✓ ✓ 

Stop number ✓ ✓ 

Street lamp number  ✓ 

Parking number  ✓ 

Bicycle Parking number  ✓ 

Polyline 

OSM_railways Total railway length (m) ✓ ✓ 

OSM_roads 

Total cycleway length (m) ✓ ✓ 

Total motorway length (m) ✓ ✓ 

Total motorway link (m) ✓ ✓ 

Total service road length (m) ✓ ✓ 

Total residential road length (m) ✓ ✓ 
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Total footway length (m) ✓ ✓ 

Total primary road length (m)  ✓ 

Total primary link length (m)  ✓ 

Total bridleway length (m)  ✓ 

Polyline OSM_roads 

Total secondary road length (m) ✓ ✓ 

Total secondary link length (m) ✓ ✓ 

Total tertiary road length (m) ✓ ✓ 

Total tertiary link length (m) ✓ ✓ 

Total track road length (m) ✓ ✓ 

Total path road length (m) ✓ ✓ 

Total steps road length (m)  ✓ 

Total trunk road length (m) ✓ ✓ 

Total trunk link length (m) ✓ ✓ 

Total pedestrian road length (m)  ✓ 

Total unclassed road length (m) ✓ ✓ 

Table 3: Table of 66 buffer statistical attributes retrieved from OSM. 

Data Interpretation: The six classes from the Hierarchy Cluster Analysis are in Figure 20 and Table 5. 

The difference between classes 1-3 and 4-6 is that classes 1-3 are cameras in more built areas, while 

classes 4-6 are in more open and natural areas. The evidence in the 66 buffer statistical attributes is that 

the built area and length (e.g., parking lot area, building area, POIs area) for classes 1-3 are much more 

than classes 4-6. 
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To represent the environmental features of cameras in vector space, we generate a buffer with a radius 

of 2,000 meters and 5,000 meters for each camera location. Next, we split all the point, line, and 

polygon geographic layers by attributes and values of attributes. We traversed the split layers and 

calculated the number of points, the total length of lines, and the total area of polygons located in each 

buffer circle. Below is the list of 66 buffer statistical attribute results from this procedure (Table 3). The 

number of bus stops, the length of the footway, the length of the cycleway, and the resident population 

clearly impact classes 1, 2, and 3 or classes 4, 5, and 

6. 

ID Camera Name ID Camera Name ID Camera Name 

0 
494_flyingcloud_sramp_gridsmar 

t 11 s_65_viking_nuturn_gridsmart 21 s_cr144_james_vision 

1 494_pilotknob_nramp_iteris 12 s_65_viking_wside_gridsmart 22 s_cr144_rogershighscool_vision 

2 62_france_nramp_vision 13 35e_cliff_eramp_iteris 23 s_12_carlson_sramp_vision 

3 62_france_sramp_vision 14 35e_cliff_wramp_iteris 24 s_12_carlson_nramp_vision 

4 65_41st_gridsmart 15 36_whitebear_sramp_iteris 25 CR81_industrial_visions_stream 

5 694_eriver_nramp_vision 16 36_whitebear_nramp_iteris 26 CR81_deere_visions_stream 

6 694_eriver_sramp_vision 17 47_85th_Iteris_Stream1 27 CR81_memorial_visions_strea

m 

7 77_cliff_eramp_vision 18 

47_Mississippi_Movision_Stream 

3 28 s_12_csah101_sramp_vision 

8 77_cliff_wramp_vision 19 51_crc2_iteris 29 s_12_csah101_nramp_vision 

9 s_65_viking_suturn_gridsmart 20 s_cr144_northdale_vision 30 65_81st_Vision_Stream1 

10 s_65_viking_eside_gridsmart     

Table 4. The camera IDs used in Figure 20’s horizontal axis and its 

corresponding camera names. 
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Figure 20. Hierarchy Cluster Analysis result of all 31 cameras’ 66 environmental features. 

Camera Class ID Camera IDs 

1 0, 7, 8 

2 4, 2, 3 

3 13, 14, 1, 15, 16, 5, 6, 18, 19, 17, 30 

4 20, 21, 22, 27, 25, 26 

5 11, 10, 9, 12 

6 23, 24, 28, 29 

Table 5. Table of camera IDs in each camera class from The Hierarchy Cluster Analysis (a clarification of 

Figure 20). 

Methods for NIT Performance Evaluation 

Our proposed methods aim to provide insight into how we can evaluate the performance of the NIT. We 

will use the results of our initial analysis to inform how we design our evaluation methods and the 
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guidelines. Primarily we will focus on what conditions contribute to poor camera performance and 

develop models that can determine if poor performance is likely. By using methods to evaluate the 

physical conditions of the camera and observing the broader weather and traffic patterns, we intend to 

create a system that can notify operators if poor performance is likely and/or currently occurring. We 

sampled our test data from December 20, 2022, to January 10, 2023, to evaluate our methods. We use 

this time range because it is one of the few date ranges that include many winter storms that would 

provide adverse weather conditions for our models to detect drops in the NIT performance. This date 

range also includes two major holidays, which allows us to observe abnormal traffic patterns. 

Computer Vision 

2.1.1: Occlusion Detection 

Motivation: Often, we run into instances where the cameras are occluded by dirt, snow, rain, etc. 

Figure 3-b shows an example of a camera occluded by rain, and Figure 21 shows an example of a camera 

occluded by snow. These issues present immediate performance problems for the NIT as they cannot 

determine if cars are present at the intersection. Consequently, not only does this affect the 

performance of the NIT, but it also affects our ability to adequately diagnose other issues that the 

camera may face due to temperature, humidity, wind, etc. 

 

Figure 21: Camera occluded by snow 

Purpose: We implement this method to 1) detect whether a camera is occluded and 2) provide data 

for a broader analysis of which camera types and placements are more prone to being affected by 
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conditions that cause occlusions. Determining whether a camera is occluded will provide immediate 

benefits as it will notify operators if someone needs to be sent to the location to clear the blockage. It 

will also provide information if a blockage persists or if it will resolve itself (e.g., snow accumulating on a 

lens during the night and melting during the day). The data from analyzing broader occlusion patterns 

between camera types and environmental conditions will allow us to provide recommendations to 

MnDOT on which conditions result in cameras requiring more consistent maintenance. This will allow us 

to make recommendations to MnDOT to aid in reducing maintenance costs and improving overall 

camera performance. For example, in Figure 21, only one camera is severely affected by snow. If this 

issue persists for certain camera types or a pattern is found correlating higher occlusion rates with 

certain environmental features, it would indicate other intersections with those same features would 

face similar issues. However, because we are only analyzing a small set of cameras, it will be difficult to 

draw broader conclusions from this mode of analysis. 

Method: We implement a model based on PFENet (Prior Guided Feature Enrichment Network) [1], an 

image segmentation model that uses supporting images during runtime. The specific model 

implemented uses Pytorch’s Resent50 [2] model as a backbone which is pretrained using the COCO 

dataset [3]. We then fine-tune the PFENet model using the Woodscape dataset [4], an open-source 

dataset of fisheye lens camera views from cars, for training image segmentation models for soil and dirt 

detection on the lens. The model is trained for 90 epochs with a base learning rate of 0.0025. 

After training, we tested the model on the recordings we collected during the data collection period. 

The model could accurately predict camera occlusion due to snow and water during our sample time 

range. As a consequence of this model having to evaluate a live video and the model taking ~0.1 

seconds to process a single frame, we recommend an implementation only be run on every second or 

every third frame so the model can keep up with the live video. 

A) Preprocessing 

There are only two preprocessing steps required for the PFENet model. The first is the creation of a 

custom support image from our dataset. We used an image editing software called GIMP to create the 

mask for the image displayed in Figure 22. 

 

Figure 22: Image and mask of the supported image for PFENet 
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The second preprocessing step is to take the video files, read them using OpenCV, and convert them to 

crop them to specific cameras. For example, in Figure 22, the image is a composition of four different 

camera perspectives. We crop each image to be a composition of four separate images and process 

them separately to improve accuracy. Once we have completed these steps for images and labels, we 

convert the labeled dataset to grayscale. Cropping is unnecessary during training time because the 

training set is not presented in the four frames in one format. 

B) Testing 

Once preprocessing steps are completed, we pass our images into our PFENet model. For each image, 

the model outputs a matrix of the size of the image with labels for each pixel of the image indicating 

whether it is occluded or not. We then sum the result and divide it by the total size of the image. This 

gives us a percentage value for the amount of the occluded image. We can then plot these results to see 

the amount of occlusion that occurs for a specific lens over a span of time. Figure 23 shows the results 

of this procedure for cameras at location 51 between December 20, 2021 and January 10, 2023. We can 

observe several instances where occlusion is detected. 

 

Figure 23: Time-series plot of occlusion detected on cameras at location 51 

Figure 24 shows us a sample frame from one of the peeks we observe in the graph in Figure 23. While 

the occlusion is not severe and does not affect the performance of the NIT, further accumulation will 

cause issues to become present later. 
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Figure 24: Example of detected occlusion at location 51 

C) Evaluation 

There is no systematic way to evaluate the occlusion detection because our test data is unlabeled. 

Therefore, we have had to manually check frames where occlusion is detected to determine how 

accurate our model is. Through manual observation, we have found that while our model is good at 

detecting occlusion, it gives many false positive results, see Figure 25. 
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Figure 25: Example of a false positive result for PFENet at location 51 

More training epochs on the PFENet model may help alleviate these issues; however, in the immediate 

term, we plan on implementing threshold values to the occlusion detection method. 

This would require a minimum percentage of the lens occluded before operators are notified. This is 

supported by evidence from our observations that many false positive results have lower occlusion 

percentages than their counterparts where occlusion is truly present. 

2.1.2: Car Detection 

Motivation: Currently, we have no baseline for evaluating the performance of the NIT technologies in 

determining if a car is present in the detection areas as described in section 1.1.1. Manually checking 

the video for a long time (e.g., one year) is not possible. This does not allow us to directly observe 

performance drops due to factors outside of lens occlusion like temperature, wind, faulty parts, etc. 

Purpose: The purpose of this model is to provide a proper baseline to measure the ongoing 

capabilities of the NIT in vehicle detection. Once this baseline has been established, we can compare the 

NIT technologies' performance to the car detection model to determine if there are any performance 

lags or drops that indicate the NIT is degrading somehow. Once a significant discrepancy is detected, 

operators will be flagged that there is an issue so proper diagnostic procedures can be made to resolve 

the issue. Additionally, we want to determine if any specific camera types have more consistent and 

long-lasting performance drops to support our recommendation for different camera types that do not 

show those issues. 

Method: We implement a YOLO v5 model [5], a popular object detection model loaded using Pytorch. 

It was pre-trained using the COCO dataset [3], containing 50 labels, including various vehicle types, cars, 

bikes, trucks, etc. We use this model out of the box on the video data to determine if a vehicle is inside 

one of the detection zones. We then compare the results from YOLO to the Acctuated Signal data to 

determine if there is a significant difference to indicate an issue with the NIT. 

Like occlusion detection, the model will take ~0.1 seconds to process a single frame when performing 

detection on a live video feed. This will require the model to be run on every second or third frame for 

the model to keep up with the live video feed. 

A) Preprocessing 

Actuated Signal Data: We focus on 81/82 calls as they indicate whether a car has entered a detection 

volume. Additionally, the actuated signal data is initially unordered, so we take steps to order it 

temporally. 

Video Data: To preprocess the video data, we crop the video to a section immediately before one of the 

detection zones in a single lane (Figure 26). This reduces noise and allows us to focus on a single signal 
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code for analysis. We chose a section before the detection zone because, through experimentation, we 

found that the colored detection zones interfere with the YOLO model resulting in lower accuracy. 

 

Figure 26: Sample of cropped video data 

B) Testing 

We run the YOLO model on the video data and output the detection results for each second of the video 

data to a .csv file for evaluation. During runtime, we implement a text reader model on the video data 

section containing the timestamp to automatically determine if a car has been detected moving into a 

detection zone at that timestamp. We then export these results for an entire video to a .csv file for 

evaluation. While the text reading models tend to be reasonably accurate, we have noticed some minor 

issues in reading the timestamp code, this can be resolved in the live version by simply tracking the real-

time, but for now, we will expect some small drop in the accuracy of our model due to these errors. 

We take the results in the .csv file and compare them with the actuated signal data results to show an 

accurate comparison. We also plot the results of our YOLO detection over time (Figure 27). We can 

observe fairly regular night/day patterns with intersections. Promisingly, we can observe that time 

ranges in Figure 23, where occlusion is detected, often line up with sections in Figure 27, where no cars 

are detected, indicating that the occlusion detected affects the camera's ability to detect cars. 

 

Figure 27: Time-series plot of car detection on cameras at location 51 

C) Evaluation 
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We evaluate the results of our YOLO model by comparing them to the actuated signal data. Using the 

obtained time-stamped .csv files from the YOLO model, we look at the time stamps where cars were 

detected and compare them to the 81/82 calls in the actuated signal data. We include a 20-second 

buffer to account for the time it takes for cars to enter and leave the detection area. We hope to 

improve the selected time span to fine-tune our accuracy and minimize false negatives. With the 20-

second buffer, our current accuracy results for the selected time span is 12.8% which is surprisingly low. 

Our initial explanation for these poor results is that YOLO often fails in low-light conditions. At the same 

time, it seems the NIT switches over to headlight detection in those conditions, making it so they can 

operate as night as well as day under certain circumstances. We intend to investigate further ways to 

improve the accuracy of our YOLO metrics for our future analysis 

Anomaly Detection 

Motivation: The detailed actions of sensors could be recorded in the actuated signal data. Thus the 

actuated signal data contains the aggregated information about different kinds of sensors in an 

intersection. Sensor malfunctions cause abnormal detection behaviors. Correspondingly, abnormal 

patterns could be observed in actuated signal data. Based on this, if we can detect the abnormal 

patterns in the actuated signal data, we can get the reference to reflect the potential malfunctions of 

sensor detection. As it is hard to enumerate all the possible malfunctions due to the diversity of 

detection technology and cause conditions, an unsupervised method that can automatically detect 

abnormal signals is preferred. Thus, we plan to apply unsupervised anomaly detection on actuated 

signal data to detect the abnormal patterns which could correspond to potential sensor detection 

malfunctions. 

Purpose: The goal is to detect abnormal patterns with an unsupervised time series anomaly detection 

method. Once an anomaly is detected by our method, we can check related information to finalize the 

exact issues. The related information could be the root causes (e.g., environment and weather 

conditions) of the abnormal patterns (which would be introduced in detail in the method description) or 

domain knowledge (according to the judgment of maintenance staff). The possible final issues could be: 

1) abnormal patterns caused by actual sensor detection malfunctions, 2) abnormal patterns caused by 

unusual events (e.g., holidays) beyond sensor functionality, and 3) unexpected sudden changes in the 

traffic flow (e.g., sudden traffic accidents). 

Method: We propose to apply VAE[6] for time series anomaly detection to detect abnormal patterns in 

actuated signal data and develop root cause analysis to identify the cause of the abnormal patterns for 

helping finalize the potential abnormal patterns into actual sensor detection malfunctions. Thus, we first 

preprocess all the related data (e.g., actuated signal data, weather metrics, and dates over time) into 

time series (i.e., an time series is a sequence of values with temporal order). Below are some strategies 

we use to preprocess these data. 

A. Preprocessing: 
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(1) Actuated signal data: We focus on the 81/82 phases (off/on actions for all detectors). We 

aggregate all the phases within a specific time span (e.g., an hour or a day) and count the frequency as 

the value for a time step. Currently, we focus on a daily level. Each time step in our following 

preprocessing and initial results represents a day if not specified. 81 and 82 appear as a pair 

simultaneously, so we only need to count one phase. Thus, the data is processed into phase volume 

time series. 

(2) Weather metrics: Our initial analysis of failure cases shows that bad weather conditions can 

cause the failure of detection technology. Thus, we preprocess the weather metrics into a similar 

resolution corresponding to actuated signal data and apply root cause analysis between weather 

metrics time series and phase volume time series. Due to the diversity of weather metrics, the 

preprocessing for different weather metrics could be classified into two categories: when the weather 

metrics are numeric type, we aggregate the metrics values over a specific time span with the mean or 

median operation; When the weather metrics are categorical type, we aggregate the metrics values 

over a specific time span with a majority voting strategy (i.e., the most frequent value is the winner 

value for the time step). 

(3) Dates over time: Our initial analysis of traffic volume data implies that the traffic volume has 

various temporal patterns related to dates: daily pattern (e.g., high volume in the daytime and low 

volume in the night), weekly pattern (e.g., high volume in the weekdays and low volume in the 

weekend), seasonality pattern (e.g., high volume in the summer and low volume in the winter), festival 

pattern (e.g., traffic volume drops suddenly in big festival). Thus, the 81/82 phases in actuated signal 

data should have similar patterns as the phase volume corresponds to the traffic volume, which could 

be reflected by the dates over time. Currently, we focus on modeling the weekly pattern and festival 

pattern. Particularly, we encode each day within a week as 1–7 correspondingly if there is no holiday. 

Otherwise, we encode a holiday (i.e., Christmas) as 10. Thus, the dates over time become time series 

with possible values of 1–7 and 10 at each time step. 

B. Anomaly detection on phase volume time series: 

At any given time step t, a target snippet (of window size k for recent k time steps in ) from the phase 

volume time series, the VAE anomaly detection method could predict if there is an abnormal pattern. In 

our initial study, we set k=14. Under the recent 14 days as the context, it implies that the target time 

step t is an abnormal pattern. 

C. Root cause analysis: 

We build a causality graph (i.e., a directed edge indicates the causality relation) between phase volume 

time series and other root cause time series (e.g., weather metrics and dates over time). The graph edge 

weight is a dynamic weight representing the root cause's impact over time. Once the abnormal pattern 

is detected, the root cause (i.e., the time series with the highest impact) could help interpret the 

possible cause. 

D. An case study 
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Here, we provide an example from our initial results to better show the B and C steps. Figure 28 

presents anomaly detection results for the phase volume time series between Dec. 14th, 2022 – Jan. 

17th, 2023. The smallest predicted value is the 20th time step, which corresponds to Jan. 4th, 2023, with 

the second lowest volume value (the lowest value is on Christmas). According to the weather report, a 

snowstorm occurred on the 3rd-4th of 2023. Our recorded video also verifies this. The corresponding 

weather metrics time series are shown in Figure 23. We can observe significantly low visibility and a 

precipitation type 10 (mapping to 

frozenPrecipitationSlight). Assume we learn causality relations between weather metrics time series and 

phase volume time series for this time step (Figure 24). We can speculate bad weather conditions likely 

caused the abnormal pattern. The low visibility suggests that the heavy snow could affect the camera 

detection and result in the consequent decrease in the phase volume. As for the 11th time step (with 

the lowest volume value), even though the predicted likelihood is small (the 7th smallest) and could be a 

potentially abnormal pattern, we may not speculate a snowstorm caused it as the visibility is excellent. 

Instead, both the Christmas festival and the low temperature could affect the volume decrease. To 

further confirm that low temperature affects the detection of the inductive loop, we have analyzed in 

section 1.1.3 for Fig. 7 and Fig. 8. And we can observe that during the very low-temperature days, the 

inductive loop fails to detect all the cars (i.e., the parameter representing inductive loop phases are not 

shown as expected) even though the cars can be observed in the video. This observation is consistent 

with the report [7] that explains how very low/high temperature affects the performance of the 

inductive loop from the working principle of the inductive loop. 

 

Figure 28. anomaly detection example for phase volume time series from intersection 65_81st. 

Each x-axis time step represents a daily record. The orange line is the phase volume time series over 

time. The blue crosses will likely be a normal pattern for all the corresponding time steps. The lower the 

predicted likelihood is, the more likely the time step is abnormal. 
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 (a) visibility (b) air temperature 

 

 (c) humidity (d) precipitation type 

Figure 29. Four examples of weather metrics time series. For the categorical metrics precipitation type, 

we have the following mapping: 'noPrecipitation'=1, 'rainSlight'=2, 

'rainModerate'=3, 'rainHeavy'=4, 'snowSlight'=5, 'snowModerate'=6, 'snowHeavy'=7, 'other'=8, 

'frozenPrecipitationSlight'=10 
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Figure 30. An example of a learned root cause analysis graph for time step 20th. 

Summary and Next Steps 

In this task, we performed several analyses on the traffic camera data, traffic volume data, actuated 

signal data, weather station data, and geographic data. Our analysis shows useful patterns for 

characterizing when and how various environmental factors (e.g., weather events) could impact the NIT 

performance. We also developed several machine learning methods to facilitate the NIT performance 

evaluation. The machine learning methods include computer vision models for detecting camera 

occlusion (e.g., raindrops on the camera lens) and counting cars for traffic camera data and time series 

anomaly detection models for traffic volume data and actuated signal data. The lessons learned from 

the analysis results and the machine learning method serve as the basis for developing the guidelines 

for the next task. 

We plan to integrate the analysis results with the machine learning methods in the next step to produce 

a final memorandum detailing the scenarios (e.g., the surrounding built environment of a camera, 

camera types, camera directions, and weather events) linked to anomalies in the NIT performance. We 

will also document the limitations of the proposed technique using evaluation results from manually 

verified data at sampled locations. 

Appendix: 

 I. Video data recorded: 

'2021-11-22', '2021-11-23', '2021-11-24', '2021-11-25', '2021-11-26', '2021-11-27', '2021-11-28', 

'2021-11-29', '2021-11-30', '2021-12-01', '2021-12-02', '2021-12-03', '2021-12-04', '2021-12-05', 

'2021-12-06', '2021-12-07', '2021-12-08', '2021-12-09', '2021-12-10', '2021-12-11', '2021-12-12', 
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'2021-12-13', '2021-12-14', '2021-12-15', '2021-12-16', '2021-12-17', '2021-12-18', '2021-12-19', 

'2021-12-20', '2021-12-21', '2021-12-22', '2021-12-23', '2021-12-24', '2021-12-25', '2021-12-26', 

'2021-12-27', '2021-12-28', '2021-12-29', '2021-12-30', '2021-12-31', '2022-01-01', '2022-01-06', '2022-

01-07', '2022-01-08', '2022-01-09', '2022-01-10', '2022-01-11', '2022-01-12', '2022-01-13', 

'2022-01-14', '2022-01-15', '2022-01-16', '2022-01-17', '2022-01-18', '2022-01-19', '2022-01-20', '2022-

01-21', '2022-01-22', '2022-01-23', '2022-01-24', '2022-01-25', '2022-01-26', '2022-01-27', 

'2022-01-28', '2022-01-29', '2022-01-30', '2022-01-31', '2022-02-01', '2022-02-02', '2022-02-03', 

'2022-02-04', '2022-02-05', '2022-02-06', '2022-02-07', '2022-02-08', '2022-02-09', '2022-02-10', '2022-

02-11', '2022-02-12', '2022-02-13', '2022-02-14', '2022-02-15', '2022-02-16', '2022-02-17', 

'2022-02-18', '2022-02-19', '2022-02-20', '2022-02-21', '2022-02-22', '2022-02-23', '2022-02-24', 

'2022-02-25', '2022-02-26', '2022-02-27', '2022-02-28', '2022-03-01', '2022-03-02', '2022-03-04', '2022-

03-05', '2022-03-06', '2022-03-07', '2022-03-08', '2022-03-09', '2022-03-10', '2022-03-11', 

'2022-03-12', '2022-03-13', '2022-03-14', '2022-03-15', '2022-03-16', '2022-03-17', '2022-03-18', 

'2022-03-23', '2022-03-30', '2022-03-31', '2022-04-01', '2022-04-02', '2022-04-03', '2022-04-04', '2022-

04-05', '2022-04-06', '2022-04-07', '2022-04-08', '2022-04-09', '2022-04-10', '2022-04-11', 

'2022-04-12', '2022-04-13', '2022-04-14', '2022-04-15', '2022-04-16', '2022-04-17', '2022-04-18', 

'2022-04-19', '2022-04-20', '2022-04-21', '2022-04-22', '2022-04-23', '2022-04-24', '2022-04-25', 

'2022-04-26', '2022-04-27', '2022-04-28', '2022-04-29', '2022-04-30', '2022-05-01', '2022-05-02', 

'2022-05-03', '2022-05-04', '2022-05-05', '2022-05-06', '2022-05-07', '2022-05-08', '2022-05-09', '2022-

05-10', '2022-05-11', '2022-05-12', '2022-05-13', '2022-05-14', '2022-05-15', '2022-05-16', 

'2022-05-17', '2022-05-18', '2022-05-19', '2022-05-20', '2022-05-31', '2022-06-01', '2022-06-02', 

'2022-06-03', '2022-06-04', '2022-06-05', '2022-06-06', '2022-06-07', '2022-06-08', '2022-06-09', '2022-

06-10', '2022-06-11', '2022-06-12', '2022-06-13', '2022-06-14', '2022-06-29', '2022-06-30', 

'2022-07-01', '2022-07-02', '2022-07-03', '2022-07-04', '2022-07-05', '2022-07-06', '2022-07-07', '2022-

07-08', '2022-07-09', '2022-07-10', '2022-07-11', '2022-07-12', '2022-07-13', '2022-07-14', 

'2022-07-15', '2022-07-16', '2022-07-17', '2022-07-18', '2022-07-19', '2022-07-20', '2022-07-21', 

'2022-07-22', '2022-07-23', '2022-07-24', '2022-07-25', '2022-07-26', '2022-07-27', '2022-07-28', 

'2022-07-29', '2022-07-30', '2022-07-31', '2022-08-03', '2022-08-05', '2022-08-06', '2022-08-07', '2022-

08-08', '2022-08-09', '2022-08-10', '2022-08-11', '2022-08-12', '2022-08-13', '2022-08-14', 



F-36 

'2022-08-15', '2022-08-16', '2022-08-17', '2022-08-18', '2022-08-19', '2022-08-20', '2022-08-21', 

'2022-08-22', '2022-08-23', '2022-08-24', '2022-08-25', '2022-08-26', '2022-08-27', '2022-08-28', 

'2022-08-29', '2022-09-14', '2022-09-15', '2022-09-16', '2022-09-17', '2022-09-18', '2022-09-19', 

'2022-09-20', '2022-09-21', '2022-09-22', '2022-09-23', '2022-09-24', '2022-09-25', '2022-09-26', 

'2022-09-27', '2022-09-28', '2022-09-29', '2022-09-30', '2022-10-01', '2022-10-02', '2022-10-03', 

'2022-10-04', '2022-10-05', '2022-10-26', '2022-10-27', '2022-10-28', '2022-10-29', '2022-10-30', 

'2022-10-31', '2022-11-01', '2022-11-02', '2022-11-03', '2022-11-04', '2022-11-12', '2022-11-13', '2022-

11-14', '2022-11-15', '2022-11-16', '2022-11-17', '2022-11-18', '2022-11-23', '2022-11-24', 

'2022-11-25', '2022-11-26', '2022-11-27', '2022-11-28', '2022-11-29', '2022-11-30', '2022-12-01', 

'2022-12-02', '2022-12-03', '2022-12-04', '2022-12-05', '2022-12-06', '2022-12-07', '2022-12-08', '2022-

12-09', '2022-12-10', '2022-12-11', '2022-12-12', '2022-12-13', '2022-12-14', '2022-12-15', 

'2022-12-16', '2022-12-17', '2022-12-18', '2022-12-19', '2022-12-20', '2022-12-21', '2022-12-30', 

'2022-12-31', '2023-01-01', '2023-01-02', '2023-01-03', '2023-01-04', '2023-01-05', '2023-01-06', '2023-

01-07', '2023-01-08', '2023-01-09', '2023-01-10', '2023-01-11', '2023-01-12', '2023-01-13', 

'2023-01-14', '2023-01-15', '2023-01-16', '2023-01-17', '2023-01-18', '2023-01-19', '2023-01-20', 

'2023-01-21', '2023-01-22', '2023-01-23', '2023-01-24', '2023-01-25', '2023-01-26', '2023-01-27', 

'2023-01-28', '2023-01-29', '2023-01-30', '2023-01-31', '2023-02-01', '2023-02-02', '2023-02-03', 

'2023-02-04', '2023-02-05', '2023-02-06', '2023-02-07', '2023-02-08', '2023-02-09', '2023-02-10', 

'2023-02-24', '2023-02-25', '2023-02-26', '2023-02-27', '2023-02-28', '2023-03-01', '2023-03-02', 

'2023-03-03', '2023-03-04', '2023-03-05', '2023-03-06', '2023-03-07', '2023-03-08', '2023-03-09', '2023-

03-10', '2023-03-11', '2023-03-12', '2023-03-13', '2023-03-14', '2023-03-15', '2023-03-16', 

'2023-03-17', '2023-03-18', '2023-03-19', '2023-03-20', '2023-03-21', '2023-03-22', '2023-03-23', 

'2023-03-24', '2023-03-25', '2023-03-26', '2023-03-27', '2023-03-28', '2023-03-29', '2023-03-30', 

'2023-03-31', '2023-04-01', '2023-04-02', '2023-04-03', '2023-04-04', '2023-04-05', '2023-04-06', 

'2023-04-07', '2023-04-08', '2023-04-09', '2023-04-10', '2023-04-11', '2023-04-12', '2023-04-13', '2023-

04-14' 
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Executive Summary 

Modern intersection control primarily relies on the actuated systems that respond to traffic at the 

intersection. MnDOT and many local MN agencies have traditionally used embedded loop detectors in 

the pavement for detecting vehicles. Although the performance of a well-placed loop detector has yet 

to be matched by any other method, changes in the vehicle fleet (higher use of non-ferrous material), as 

well as increased need for more comprehensive detection (vulnerable road users, all lanes individual 

advance and stop line detection), has resulted in the increased use of Non-Intrusive detection 

Technologies (NIT). There are studies evaluating the performance of NIT detection. Still, all have been 

racing against obsolescence given the rapid developments in the market, and generally do not provide 

the necessary results to evaluate performance in specific environments. This report shows the results of 

year-round observation and recording of the performance of selected real deployments of major 

products used in Minnesota. We select several sites within the Twin Cities Metropolitan area and 

analyze their performance when subjected to different environmental conditions. 
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To evaluate the performance of NIT in different conditions, our methodology uses signal data to 

determine failure rates for different NIT devices, video data to determine what type of failure has 

occurred, and weather data to determine the conditions that lead to the failure. In our research, failure 

rates are determined by comparing NIT and baseline detector controller data to averages from the 

surrounding two weeks using the Pearson correlation. If there is a significant deviation in the NIT 

controller data and not the baseline controller data, we classify this as a failure. Using an optical flow 

algorithm, our pipeline then looks for any signs of lens occlusion on the camera through the video data. 

Finally, weather variables are correlated with NIT failures in our method by using the Local Correlation 

metric to determine how strongly the weather conditions relate to the controller data. If a weather 

variable strongly correlates with the controller data, we say it has caused the failure. 

We construct a pipeline to accomplish this goal and evaluate the data over 10 days from 

January 1-10 2023. Using our pipeline's results, failure rate statistics are calculated for different 

detection technologies and what types of weather conditions they occur under. In evaluating both Iteris 

and Vision NITs, our results show neither detection technology outperforms the other in all conditions. 

However, when observing the performance of both Iteris and Vision detection technologies under 

intense winter storms, we find that the Vision detection technology is less susceptible to long-term 

failures that require on-site maintenance (e.g., snow, dirt, rain, etc., blocking the camera lens). 

Additionally, the Iteris detection technology is uniquely susceptible to failures caused by humidity, and 

while it may experience fewer overall malfunctions, it experiences more malfunctions during intense 

winter storms. 

Problem Description 

The Minnesota Department of Transportation (MnDOT) worked to deploy Non-Intrusive Detection 

Technologies (NIT) for vehicle detection at signalized intersections to detect cars, bikes, and 

pedestrians. They are used to alert other drivers and allow the traffic signal to modify timing to better 

serve the immediate traffic needs. This project aims to evaluate the operational performance and costs 

of the various technologies deployed by MnDOT at intersections in the Twin Cities Metropolitan Area. 

We accomplish this goal by evaluating the performance of these NITs under various conditions. 

In this report, we present a final memorandum that documents the methodology we use to calculate 

the benefits of our proposed approach for evaluating NIT and outlines key steps that MnDOT can take to 

implement the results of our research. The outline methods that were employed in our research to 

evaluate the performance of NIT under various conditions, along with some preliminary results from our 

analysis. This report is broken into three sections, each outlining essential steps in the methodology and 

evaluation of our research and any assumptions we make. 

The report is structured as follows. Section 2 outlines the methodology for our proposed approach to 

evaluating NIT, including a flow chart that describes how our approach utilizes the provided data to 

generate results. The section presents the results of our proposed methodology and the benefits it 
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offers to MnDOT. It also explains the process for selecting NIT technologies using this methodology. 

Section 3 provides a pointer to the code repository for implementing the methodology described in 

Section 2 and instructions for running it. 

Methodology 

 

Figure 1: Flowchart of our proposed methodology broken down into color-coordinated sections. 

In our methodology, signal controller (2.1.2), weather (2.1.3), and video data (2.1.1) are used to detect, 

categorize, and perform a correlation analysis of malfunctions of NIT detection technologies. Figure 1 

shows an overview of the methodology through a flow chart with color-coordinated sections for each 

sub-task in evaluating NIT performance. In the Malfunction Detection section (2.2), our methods detect 

when malfunctions in NIT occur. In the Weather Correlation Analysis (2.3) and Video Detection (2.4) 

sections, we describe the possible causes of malfunctions. We generate example results for January 
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2023 at six road intersections using this method. We have chosen this period because January 2023 had 

severe snow storms that affected NIT's performance. Evaluating which technologies performed better 

over this period will give insight into which technologies perform better in the worst of a Minnesota 

winter. Before continuing to the in-depth description of each section, we need to define important 

terms and give a brief overview of each subsection. 

Evaluation Data 

We evaluate our methods using signal controller and video data from six intersections around the Twin 

Cities Metropolitan area. These intersections are 65_81st_Vision_Stream1, 51_crc2_iteris, 

47_85th_Iteris_Stream1, 77_cliff_eramp_vision, 694_eriver_nramp_vision, and 

694_eriver_sramp_vision, with respective locations in Table 1. For analysis, these cameras are split into 

two groups, one of which uses the Iteris Vantage Next detection system (shortened to ITERIS) and the 

other which uses the Autoscope Vision detection system (shortened to VISION). We have 4 detection 

systems using the Autoscope Vision detection system and 2 using the Iteris Vantage Next detection 

system. The focus is on these detection systems as they are the most widely used video detection 

technologies within the study area defined by the Task 4 and 5 deliverables documents. 

Important Terms 

- Pattern: When referring to patterns in the signal controller data, we refer to predictable 

changes in the number of cars detected at an intersection over a specified period. 

- Anomaly: When referring to anomalies, we describe patterns in the signal controller data that 

do not align with historical trends. 

- Performance: When referring to the performance of NIT devices, we refer to their accuracy 

and Malfunction Rate. 

- Malfunction: A Malfunction is defined by the differences in the vehicle count profiles that 

exceed a certain threshold between NIT and baseline data. 

- Lens Occlusion: When referring to lens occlusion, we describe snow, ice, dirt, or other 

particles that can accumulate on a NIT camera lens, preventing detections. 

- Baseline Detector: When referring to a baseline detector, we describe devices placed at 

intersections meant to detect cars passing through an intersection that is not NIT. These include 

loop detectors, lidar, radar, etc. As per the recommendation in the Task 1 deliverable, our 

methodology uses these as baselines to evaluate NIT performance. 

- Pearson Correlation: The Pearson correlation is a statistical measure that quantifies the 

degree and direction of a linear relationship between two continuous variables, ranging from 

perfect positive correlation (1) to perfect negative correlation (-1), with 0 indicating no linear 

relationship. 

- Local Correlation: The local correlation [5] tracks non-linear relationships between time series 

locally using eigen-analysis of auto-covariance matrices. Unlike the Pearson correlation, it can 

capture complex, non-linear relationships between time series. 
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Performance Measures 

- Malfunction Rate: Using our method, the performance of NIT is evaluated by observing the 

number of times a NIT device experiences a Malfunction over a period. As our pipeline uses a 

temporal resolution of one hour for malfunction detection, each day has a maximum of 24 

possible malfunctions. We expect to see some malfunctions on every device during the night 

when, due to low-light conditions, performance drops. Therefore, 

our analysis focuses on days with 8 or more malfunctions. Additionally, when comparing 

different detection technologies, the performance of each detection technology is measured by 

comparing its malfunction rate on a given day. 

- High Correlation Rate: In our methodology, weather features correlate with NIT device 

malfunctions (see Local Correlation in the Important Terms section for more information). 

For a given detection technology or malfunction type, we calculate the number of times our 

pipeline determines a weather feature is highly correlated with malfunctions out of the total 

number of malfunctions. We use this measure to analyze the effect that weather feature has on 

the detection technology/malfunction type. If a weather feature appears in a third of all 

malfunctions of a given detection technology/malfunction type, we consider this significant for 

our analysis. 

Section Overview 

Data (2.1): This section includes an overview of the data used in our pipeline. 

Malfunction detection (2.2): In the flow chart, the red-colored module uses the signal controller 

data to detect malfunctions in NIT technologies. Our methods detect malfunctions by independently 

evaluating the performance of NIT and baseline detectors. We accomplish this by comparing the signal 

controller data from a specified period to historical averages to generate a 

list of anomalous periods (see section 2.2.2). This task is performed twice, once for the controller data 

from the baseline detectors and again for the controller data from the NIT. We then compare the 

anomalous periods our methods detect in NIT data and the baseline detector data to define malfunction 

(see section 2.2.3). If our methods detect an anomalous period from the NIT data, not the baseline 

detector data, we classify this as a malfunction. In cases where an anomalous period is detected in 

either device or an anomalous period in both devices, we do not classify this as a malfunction. This is 

the purpose of the two “Was anomaly detected” blocks, as our methodology detects anomalies in the 

NIT controller data and the baseline detector controller data. Through this process, our methodology 

returns the locations, dates, and times of the malfunctions it detects. We exclude anomalous periods 

that appear in both NIT and baseline detectors from the set of malfunctions to focus our evaluation on 

NIT failure cases exclusively. Weather Correlation Analysis (2.3): In the flow chart, the purple-

colored module uses the weather data and results from the malfunction detection step to perform a 

correlation analysis of the malfunctions. We compare time series trends in signal controller data to 

those in several weather variables and calculate a local correlation value for each hour for every 
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weather variable using a sliding window of 5 hours (see 2.3.2). The local correlation score measures the 

similarity between the two time series over the 5-hour window. However, the individual scores cannot 

capture the global similarity between the two time series trends. We introduce the consistency score to 

measure this value (see 2.3.3). In our research, the consistency score is calculated using the local 

correlations for a given weather variable. The consistency score measures how much a weather 

variable’s local correlation score fluctuates over the entire period covered by the weather and signal 

controller data. We extract the weather variables with high consistency and local correlations during 

each malfunction (see 2.3.4). Using the local correlation and consistency scores ensures our 

methodology only extracts weather variables with high global and local similarity to the signal controller 

data. 

Video Detection (2.4): In the flow chart, the green-colored module uses the video data to determine 

the type and direct cause of the malfunction (e.g., lens occlusion, blur, glare, etc.). 

This process returns the type of malfunction based on the video data analysis. 

Malfunction Analysis (2.5): In the flow chart, the blue-colored module uses the Malfunction 

Database to analyze the data we collect on malfunctions. This process outputs the overall results of our 

pipeline and provides statistics on malfunctions for different NIT technologies, locations, and weather 

conditions. 

2.1: Data: 

This section briefly outlines the data used directly in our methodology. We use Traffic Camera Data 

(2.1.1), Signal Controller Data (2.1.2), and Weather Data (2.1.3). 

Traffic Camera Data 

Summary: The Traffic Camera Data is video data we collect from the traffic cameras around the Twin 

Cities Metropolitan Area. MnDOT provides the data which contains the video recordings from traffic 

cameras in *.mp4 format. Our research uses the video data to look for camera detection failures and 

help confirm failures in NITs. 

Data Source: MnDOT provides 39 cameras in the Twin Cities Metropolitan Area, with traffic camera 

names assigned to each camera. 

Attributes: Camera Name, Latitude, Longitude, Link (Google Maps) (Table 1). The camera name is a 

designation given by MnDOT and contains information about the intersecting streets, the camera 

technology used, and the ramp direction (if next to a highway). We identify the Latitude, Longitude, 

and the Google Maps URL that reference the location of each camera (our process is outlined in the 

Spatial Coverage section below) using Google Maps. Spatial Coverage: MnDOT provides 39 cameras 

named after camera locations and types covering the Twin Cities Metropolitan Area, including four 

counties or 13 cities. We collect the point geographic coordinates of each camera location by searching 

the road intersection on 
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Google Maps. Take “35e_cliff_eramp_iteris” as an example. We search “I-35E” and “Cliff” on Google 

Maps, find the road intersection of “I-35E” and “Cliff Rd,” and acquire the geo-coordinates on the east 

ramp. “Iteris” refers to the camera type. After removing the cameras that cannot be located using this 

process, we then record the 31 individual identifiable cameras (No.1- No.31 in Table 1) with their 

associated geographic coordinates for further sampling and analysis (Figure 2). 

Date Captured: We collect camera recordings from 11/22/2021 to 05/20/2023 and from 

08/09/2023 to 10/07/2023 

Collected Spatial Coverage: Twin Cities Metropolitan Area, covering four counties 

Use Case: We use the Traffic Camera Data to help categorize detected malfunctions. Detecting 

malfunctions in the camera data by reviewing all video data would take an incredibly long time and be 

computationally expensive. Therefore, we focus on video sections where our methods determine a 

malfunction in the NIT device using the Signal Controller Data (2.2). Our research then uses Video 

Detection (2.4) to determine the type of malfunction. 

Point Locations: 

No. Camera Name Type Latitude Longitude Link (Google Maps) 

1 35e_cliff_eramp_iteris iteris 44.790136 -93.198956 https://goo.gl/maps/24skT2KbrnrMoU1JA 

2 35e_cliff_wramp_iteris iteris 44.790131 -93.205099 https://goo.gl/maps/HZ2SHM65K83eTTog77 

3 36_whitebear_nramp_iteris iteris 45.012665 -93.020928 https://goo.gl/maps/KieTBYXEXENGR6dY9 

4 36_whitebear_sramp_iteris iteris 45.010636 -93.022571 https://goo.gl/maps/zgHTW9FXs4WwYts988 

5 47_85th_Iteris_Stream1 iteris 45.125053 -93.264553 https://goo.gl/maps/A48DyvcpYnLMF29p8 

6 

47_Mississippi_Movision_Stream 

3 movision 45.086136 -93.263535 https://goo.gl/maps/kV5jmgUQ26DopU9q7 

7 494_flyingcloud_sramp_gridsmart gridsmart 44.861405 -93.425593 https://goo.gl/maps/hjjbYwgqjXQGMmkD6 

8 494_pilotknob_nramp_iteris iteris 44.861479 -93.167119 https://goo.gl/maps/KTBLqUaRBo45sv9V7 

9 51_crc2_iteris iteris 45.027917 -93.167081 https://goo.gl/maps/1VwBnov8FEq7tvkS77 

10 62_france_nramp_vision vision 44.887507 -93.328961 https://goo.gl/maps/AA2CmQ5MdAqmbCRh9 

 

11 62_france_sramp_vision vision 44.886547 -93.328982 https://goo.gl/maps/P31VNKuaC9LCvqnn7 

https://goo.gl/maps/24skT2KbrnrMoU1JA
https://goo.gl/maps/HZ2SHM65K83eTTog77
https://goo.gl/maps/KieTBYXEXENGR6dY9
https://goo.gl/maps/zgHTW9FXs4WwYts98
https://goo.gl/maps/A48DyvcpYnLMF29p8
https://goo.gl/maps/kV5jmgUQ26DopU9q7
https://goo.gl/maps/hjjbYwgqjXQGMmkD6
https://goo.gl/maps/KTBLqUaRBo45sv9V7
https://goo.gl/maps/1VwBnov8FEq7tvkS7
https://goo.gl/maps/AA2CmQ5MdAqmbCRh9
https://goo.gl/maps/P31VNKuaC9LCvqnn7
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12 65_41st_gridsmart gridsmart 45.042744 -93.247337 https://goo.gl/maps/SEp3jd6vY7UHZvCKA 

13 65_81st_Vision_Stream1 vision 45.11504 -93.241732 https://goo.gl/maps/vTJozXz3D2wy8GLY9 

14 694_eriver_nramp_vision vision 45.069585 -93.278772 https://goo.gl/maps/LAGPMU2MyM6Soepk7 

15 694_eriver_sramp_vision vision 45.068929 -93.279158 https://goo.gl/maps/ZKiHcteNBToFauu47 

16 77_cliff_eramp_vision vision 44.790226 -93.21963 https://goo.gl/maps/cnTfPvzrihw4eEgm9 

17 77_cliff_wramp_vision vision 44.790237 -93.223347 https://goo.gl/maps/Nbewbfn3NogrT8R18 

18 CR81_deere_visions_stream vision 45.190296 -93.550583 https://goo.gl/maps/PfWNoeWpfnirCQmh9 

19 CR81_industrial_visions_stream vision 45.192302 -93.55264 https://goo.gl/maps/2eonYzcRxoWLQRNw7 

20 CR81_memorial_visions_stream vision 45.188553 -93.547743 https://goo.gl/maps/Et7H17RuUAnQBNZN7 

21 s_12_carlson_nramp_vision vision 44.972593 -93.469741 https://goo.gl/maps/hQ4cu5LSTH5XYPc36 

22 s_12_carlson_sramp_vision vision 44.969558 -93.469776 https://goo.gl/maps/uLjGo5sdCg9u8k7v9 

23 s_12_csah101_nramp_vision vision 44.976979 -93.50213 https://goo.gl/maps/FMrxWoYBbAR7uFB98 

24 s_12_csah101_sramp_vision vision 44.975039 -93.502106 https://goo.gl/maps/f1bJe7qj2vRihaX1A 

25 s_65_viking_eside_gridsmart gridsmart 45.319684 -93.235698 https://goo.gl/maps/VqgHYCqXZBmjtcac8 

26 s_65_viking_nuturn_gridsmart gridsmart 45.322122 -93.236216 https://goo.gl/maps/Si6BYYFV3nM7Cb9dA 

27 s_65_viking_suturn_gridsmart gridsmart 45.317065 -93.235865 https://goo.gl/maps/DW8TqZkE1ttYz2X56 

28 s_65_viking_wside_gridsmart gridsmart 45.319638 -93.236458 https://goo.gl/maps/UWS7Cc5PyAj7gRh58 

29 s_cr144_james_vision vision 45.210298 -93.550016 https://goo.gl/maps/i8dBxffTY6PUi6SJA 

30 s_cr144_northdale_vision vision 45.210364 -93.55579 https://goo.gl/maps/sQxo359WMDgVNAXj8 

31 s_cr144_rogershighscool_vision vision 45.210303 -93.546439 https://goo.gl/maps/L2e4wecC3rcx93kf9 

32 169_main_gridsmart gridsmart    

33 

47_Roselawn_Gridsmart_Stream 

1 gridsmart 

   

34 494_tamarack_eramp_gridsmart1 gridsmart    

https://goo.gl/maps/SEp3jd6vY7UHZvCKA
https://goo.gl/maps/vTJozXz3D2wy8GLY9
https://goo.gl/maps/LAGPMU2MyM6Soepk7
https://goo.gl/maps/ZKiHcteNBToFauu47
https://goo.gl/maps/cnTfPvzrihw4eEgm9
https://goo.gl/maps/Nbewbfn3NogrT8R18
https://goo.gl/maps/PfWNoeWpfnirCQmh9
https://goo.gl/maps/2eonYzcRxoWLQRNw7
https://goo.gl/maps/Et7H17RuUAnQBNZN7
https://goo.gl/maps/hQ4cu5LSTH5XYPc36
https://goo.gl/maps/uLjGo5sdCg9u8k7v9
https://goo.gl/maps/FMrxWoYBbAR7uFB98
https://goo.gl/maps/f1bJe7qj2vRihaX1A
https://goo.gl/maps/VqgHYCqXZBmjtcac8
https://goo.gl/maps/Si6BYYFV3nM7Cb9dA
https://goo.gl/maps/DW8TqZkE1ttYz2X56
https://goo.gl/maps/UWS7Cc5PyAj7gRh58
https://goo.gl/maps/i8dBxffTY6PUi6SJA
https://goo.gl/maps/sQxo359WMDgVNAXj8
https://goo.gl/maps/L2e4wecC3rcx93kf9
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35 494_tamarack_eramp_gridsmart2 gridsmart    

36 65_Blake_Vision_Stream1 vision    

37 97_hornsby_gridsmart1 gridsmart    

38 97_hornsby_gridsmart2 gridsmart    

39 s_12_carlson_twelveoaks_vision vision    

Table 1: Traffic camera names, locations (latitude, longitude), address, and Google Maps link. The 

locations used in evaluating our methodology are highlighted in yellow. 

 

Figure 2: Locations of cameras colored by type overlaid on the county map of the Twin Cities 

Metropolitan Area 

Signal Controller Data 
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Summary: MnDOT provides some data in the Comma-separated values (CSV) format as a 

downloadable link. However, MnDOT has since updated how they store and display signal controller 

data. We download all records from the MnDOT website in CSV format. The signal controller contains 

temporal event data on signal changes, maintenance, and traffic passing through the intersection. We 

use this data to evaluate the performance of NIT in detecting traffic moving through an intersection. 

Data Sources: MnDOT; we retrieve data when needed. 

Attributes: Time (Year, Month, Day, Hour, Minute, Second, Millisecond), Camera ID, Event Code, and 

Event Parameter [3]. Table 2 displays an example sequence of the Signal Controller Data. 

Temporal Resolution: The record updates every time a traffic-related event occurs at an intersection 

(0 milliseconds-10 seconds). The time interval is irregular and varies depending on traffic. 

Temporal Coverage: MnDOT collects the data continuously starting on 11/2021. 

Spatial Resolution: We sample six cameras out of the original 31 to cover more cases of location 

distribution, camera types, environmental features, and intersection types. Figure 3 displays the 

locations of the six cameras. The selected six cameras are: 

1. 694_eriver_nramp_vision 

2. 694_eriver_sramp_vision 

3. 65_81st_Vision_Stream1 

4. 47_85th_Iteris_Stream1 

5. 51_crc2_iteris 

6. 77_cliff_eramp_vision 

Collected Temporal Coverage: December 20, 2022 - January 10, 2023 

Why we collected these data: We sample these six cameras out of the 31 to cover various types of 

camera location distribution (from urban to suburban) and two camera types (Iteris Vantage Next, 

Autoscope Vision). This signal data gives precise timestamps for many types of traffic events, such as red 

lights, green lights, car detection, pedestrian detection, maintenance signals, etc., at a very high 

temporal resolution, allowing us to accurately describe the signals' behavior at intersections. We focus 

on event codes 82/81 because they directly correspond to vehicle counts based on detector activation, 

and use these codes to evaluate traffic detector performance. This time period is ideal as it covers a 

period of heavy snow and cold weather and allows us to evaluate the performance of NIT in extreme 

weather conditions. In addition to capturing data from NIT detections, the signal controller data also 

contains data from the baseline detectors. MnDOT assigns Event Parameters 1-4 to baseline detectors 

and all other Event Parameters to NIT (see Table 2 for Event Parameter examples) to differentiate 

baseline detectors from NIT detectors in the signal controller data. 

Data Preparation: MnDOT provides the data in the CSV format. The data is partially unordered and 

has to be ordered by timestamps using Pandas [4]. We also remove any unnecessary event codes that 
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do not pertain to evaluating camera performance. The outcome of this preprocessing is a Pandas 

DataFrame. 

Example: 

Time Camera ID Event Code Event Parameter 

2022-12-01 

04:03:12.400 

596 10 3 

2022-12-01 

04:03:12.400 

596 9 3 

2022-12-01 

04:03:14.900 

596 11 3 

2022-12-01 596 12 3 

04:03:14.900    

2022-12-01 

04:03:14.900 

596 0 6 

2022-12-01 

04:03:14.900 

596 31 2 

2022-12-01 

04:03:14.900 

596 0 2 

2022-12-01 

04:03:14.900 

596 1 2 

2022-12-01 

04:03:15.000 

596 1 6 
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2022-12-01 

04:03:15.000 

596 3 2 

2022-12-01 

04:03:29.900 

596 3 6 

2022-12-01 

04:03:29.900 

596 2 6 

2022-12-01 

04:03:36.200 

596 7 6 

2022-12-01 

04:03:36.200 

596 8 6 

2022-12-01 

04:03:41.700 

596 4 6 

Table 2: Sample of Signal Controller Data 
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Figure 3: The locations of the six cameras used in the methodology overlaid on the county map 

of the Twin Cities Metropolitan Area. 

2.1.3: Weather Data 

Summary: We collect the weather data from MDSS (www.webmdss.com). MDSS records 50 types of 

weather features for many areas inside the U.S. in real-time with a 5-minute resolution. Our 

methodology utilizes the weather data to help interpret the malfunctions detected by the Malfunction 

Detection section. Through our research, we find that weather conditions are often the leading cause of 

NIT malfunctions. 

Data Source: As our focus is on the intersections of interest, we only collect the data from the 

weather stations whose locations are the closest to the intersections listed in the Spatial Resolution 

section of 2.1.2. 

Attributes: [EVENTDATE, WEATHERSENSOR, VISIBILITY, HUMIDITY, PRECIP RATE, WIND 

DIR, WIND SPEED, MAX TEMP, MIN TEMP, WET BULB TEMP, DEW POINT, FRICTION, 

SURFACE TEMP, SURFACE STATUS, SUBSURFACE TEMP, AIR TEMP, PRECIP TYPE] 

Spatial Coverage: We focus on the Twin Cities Metropolitan area. Figure 5 shows the relevant 

weather stations. 

 

Figure 4: Weather station locations 

http://www.webmdss.com/
http://www.webmdss.com/


G-14 

Date Captured: We collect weather records from 11/22/2021 to 09/10/2023 

Collected Spatial Coverage: Currently, we focus on weather stations Maple and Little Canda as 

they are the closest stations to the intersections of interest. 

Use Case: We use weather data to help interpret the detected malfunctions. By comparing the 

dynamic relations between weather variables and the signal controller data with correlation analysis 

(2.3), we can determine the leading cause (weather conditions) of each malfunction. 

Example: 

EVENTDATE WEATHERSENSOR VISIBILITY HUMIDITY PRECIP RATE 

1/1/2023 0:00 WS0089 11.4 mi. 97% 0 

1/1/2023 0:05 WS0089 11.3 mi. 96% 0 

1/1/2023 0:10 WS0089 11.0 mi. 95% 0 

1/1/2023 0:15 WS0089 12.4 mi. 93% 0 

1/1/2023 0:20 WS0089 12.4 mi. 92% 0 

WIND DIR WIND SPEED MAX TEMP MIN TEMP WET BULB TEMP 

SW 5 MPH 35॰F 17॰F 34॰F 

SW 3 MPH 35॰F 18॰F 33॰F 

SW 6 MPH 35॰F 18॰F 33॰F 

SW 5 MPH 35॰F 18॰F 33॰F 

SW 6 MPH 35॰F 18॰F 33॰F 

DEW POINT SURFACE 

TEMP 

SURFACE 

STATUS 

SUBSURFACE 

TEMP 
AIR TEMP PRECIP TYPE 

33॰F 34॰F N/A 29॰F 34॰F None 

33॰F 34॰F N/A 29॰F 34॰F None 

33॰F 34॰F N/A 29॰F 34॰F None 

32॰F 34॰F N/A 29॰F 34॰F None 

32॰F 34॰F N/A 29॰F 34॰F None 
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Table 3: Sample of Weather Data 

Malfunction Detection 

Summary: The process described in this section evaluates the performance of NIT for each hour within 

a specified time range of seven consecutive days. From this range, our methodology identifies the hours 

during which NIT devices experience performance drops (i.e., malfunctions). We accomplish this by 

using the Pearson correlation to compare the signal controller data from a particular hour to averages 

calculated from the two weeks before and two weeks after the specified time range. The Pearson 

Correlation is helpful as it is a widely used and understood method for measuring linear relationships 

between time series. It efficiently calculates correlation over large datasets and is well-suited for 

measuring the linear relationships between two time series. If the signal controller data from the hour 

deviates from the average by more than a pre-defined threshold (see Method in section 2.2.2), we 

define this as an anomaly. We then determine if an anomaly can be classified as a malfunction if no 

corresponding anomaly exists in the baseline detector (e.g., loop detector, Radar, Lidar, etc.). 

Assumptions: We make several assumptions during this process. We assume that anomalies detected 

in NIT are not unique to NIT if an anomaly is also detected an anomaly in the baseline detector. 

Additionally, we assume that the 4-week average values of the signal controller data describe normal 

NIT/baseline detector operation. 

2.2.1: Extract NIT/Baseline Detector Data 

Goal: In this step, our pipeline transforms the signal controller data into hourly information, which we 

can use to describe the traffic flowing through an intersection. 

Input Schema: A CSV file of the same format as Table 2, where each row with an Event Code of 82/81 

represents a car detected as entering/leaving a detection volume. 

Method: For each Event Parameter in the signal controller data, we calculate the difference between 

82 and 81 events and track how many 81 events occur. This step then use these values to calculate the 

cumulative time a detector is on, the number of times the detector turns on, and the average amount of 

time a detector stays on each event parameter every hour. An example of the output of this process is 

shown in Appendix 1. 

Output Schema: This process outputs the cumulative amount of time a detector stays on, the 

number of times a detector turns on, and the average amount of time a detector stays on for each 

detection volume at an intersection for each hour in the signal controller data. 

2.2.2: Detect Anomalies 

Goal: This step determines how much the signal controller data from the selected seven-day period 

deviates from the historical averages. We calculate this deviation for each hour of data in the dataset. If 

the signal controller data deviates significantly, this indicates that either the detector is detecting cars 
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passing through an intersection where there are none, or the detector fails to detect cars as they pass 

through the intersection. We classify these cases as anomalies. 

Input Schema: The pipeline uses the results of section 2.2.1 as input for this section. Method: We 

compute the mean values for the cumulative duration a detector is active (X), the frequency of detector 

activations (Y), and the average duration a detector remains active (Z) for each hour throughout the 

week. We base the calculation on data from the two weeks preceding and following the chosen 7-day 

time range. Subsequently, for each hour within the selected 7-day period, our methods determine the 

Pearson correlation between the historical averages of X, Y, and Z and the values observed during the 7 

days. We compute the Pearson correlation using a 13-hour sliding window centered on the specified 

hour. The Pearson correlation quantifies the linear relationship between the 13-hour window's average 

values and those of the selected 7-day period. If, for a sliding window centered on hour h, the Pearson 

correlation is below the threshold of -0.6, this indicates that traffic patterns surrounding hour h deviate 

significantly from historical norms. We choose the threshold of -0.6 to ensure a strong negative 

correlation between the historical averages and the selected 13-hour window. Doing this ensures that 

we only capture traffic anomalies that deviate significantly from the historical norms. We classify these 

cases as anomalies occurring on hour x. 

Output Schema: The output of this step is the location and time of the anomalies and the type of 

detector, either NIT or baseline detector. 

2.2.3: Confirm Malfunction 

Goal: This step extracts anomalies unique to NIT devices by filtering the results of step 2.2.2. We do 

this to ensure that our analysis focuses only on conditions that lead to failure in NIT devices. Our 

pipeline then classifies these anomalies as malfunctions in NIT. 

Input Schema: Using the output of section 2.2.2, we split the detected anomalies into two groups, 

one for NIT and one for baseline detectors. We then compare these anomalies in the methods section 

below. 

Method: Using the results from the previous section, this step compares the anomalies detected in NIT 

to those detected in the baseline detector. If an anomaly is detected in a NIT detector and not the 

baseline detector, we classify it as a malfunction. If an anomaly appears in both NIT and the baseline, we 

exclude it from our analysis. 

Output Schema: This step outputs the location and time of the malfunctions (Figure 6). 
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Figure 6: Example output of detected malfunctions. Each line in this image is an example of a detected 

malfunction 

Weather Correlation Analysis 

Summary: Our analysis results from Task 7 provide a foundation that bad weather conditions are a 

common cause of the failure of NIT technologies. In this section, we implement a correlation analysis 

method for determining which weather conditions present at a given time have high correlation with 

NIT performance drops. To accomplish this, our method calculates the local correlation between 

reported weather conditions and the signal controller data. We use the local correlation instead of the 

Pearson correlation because the local correlation can describe non-linear relationships between two 

time series. Describing non-linear relationships is advantageous for comparing the signal controller data 

and the weather variables, as they may have more complex relationships than a simple linear 

relationship can describe. The sections below outline this process in detail. 

Assumptions: We make two major assumptions in this section. First, we assume that a high local 

correlation between the signal controller data and weather variables indicates a strong relationship 

between the weather variables and the signal controller data. For example, if temperature fluctuations 

are highly correlated with fluctuations in traffic flow, we assume that temperature fluctuations have a 

strong relationship with the traffic flow. Our second assumption is that temperature and visibility affect 

the performance of NIT, and are therefore consistently correlated with the performance of NIT. We 

assume visibility is correlated with NIT performance because it affects the camera’s ability to see, and 

assume temperature is correlated with NIT performance because temperature fluctuations are known 

to affect the performance of electronic components. 
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2.3.1: Compute Hourly Weather Data Statistics 

Goal: This step calculates hourly statistics for weather data. Hourly statistics are calculated from the 

weather data for each weather variable (all variables in the Attributes section of 2.1.3 excluding 

EVENTDATE and WEATHERSENSOR). We compare these statistics with those calculated in section 2.2.1 

to determine the local correlation in section 2.3.2. 

Input Schema: The weather data comes in a CSV file of the same format as in Table 5, with weather 

values reported every 5 minutes. 

Method: This step computes the average of each weather variable to calculate the hourly statistics for 

the weather data. 

Output Schema: This step outputs hourly averages for each weather variable. 

2.3.2: Calculate Correlation Between Signal Data and Weather Variables 

Goal: This step calculates the correlation between the signal controller data and each weather variable. 

Calculating the correlation helps determine which weather variables affect the detected traffic flow. 

Input Schema: Using the output of sections 2.2.1 and 2.3.1, we compare the statistics calculated from 

the signal controller data and the hourly averages for each weather variable. Method: Using the 

method for calculating the local correlation outlined in [5], we compute the local correlation between 

the signal controller data and each weather variable. The local correlation is computed for each hour of 

the dataset in this step, employing a 5-hour sliding window centered on the specified hour. We choose a 

5-hour sliding window as it is large enough to capture relationships between time series data while 

being small enough to enable a fine-grained analysis of the temporal patterns within the data. Because 

correlation analysis requires continuous, numerical values, we exclude discrete variables such as 

precipitation type, wind direction, and surface status. The abovementioned method generates local 

correlation scores for each weather variable over each sliding window centered around an hour h. A 

sample output of this process is shown in Appendix 2. 

Output Schema: This step outputs hourly correlation scores for each weather variable where the hour 

represents the hour h the sliding window was centered. 

2.3.3: Calculate which Variables are Consistently Correlated with the Signal Controller Data 

Goal: Our goal with this method is to extract weather variables with consistent correlation values over 

the entirety of the input data. If a weather variable has consistent local correlation scores 

for each sliding window, the relationship between that weather variable and the signal controller data is 

strong. 
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Input Schema: Using the output of section 2.3.2, we analyze the local correlation values for each 

weather variable and take a list of known highly correlated variables as input (described in the 

Assumptions section of 2.3). 

Method: To calculate the ratio between high and low-correlated time steps for each weather variable, 

we define two groups of correlation scores for each weather variable: a high-correlation group and a 

low-correlation group. These groups follow a 

percentage/(100%-percentage) split, with the highest percentage of values assigned to the high-

correlation group and the lowest 100%-percentage assigned to the low-correlation group. We then 

compute average values for the high-correlation and low-correlation groups and compute their ratio. 

This ratio describes how consistent the local correlation scores are over the entirety of the input data. If 

the ratio is close to 1, then the consistency is high. Then taking the ratios of the known highly correlated 

variables, this step compares them to the other ratios. If the ratio of another variable falls within a pre-

defined ratio radius range of any of the ratios of the known highly correlated variables, we then 

extract this variable as another highly correlated variable. To tune the hyperparameters percentage 

and ratio radius, we try different values in the range (0, 1) until the consistency ratio can make the 

known relevant weather variables close to each other and known irrelevant weather variables far from 

each other. In other words, when sorting all the consistency ratios in ascending order, we expect to see 

the ratio difference between consecutive variables in relevant variables is significantly smaller than the 

ratio difference between the consecutive variables in irrelevant variables. Below is an example output. 

We know HUMIDITY and VISIBILITY are causes for some malfunctions while WET BULB TEMP is not. 

After tuning hyperparameters, we can observe that the consistency ratio difference (i.e., less than 0.1) 

of consecutive variables in the bold font is much smaller than the difference (i.e., more than 0.1) 

between consecutive variables between consecutive variables beyond the bold font area. The 

consistency ratio behaviors of SUBSURFACE TEMP, SURFACE TEMP, WIND SPEED, and MAX TEMP are 

similar to those of known relevant variables, so we should also consider these variables as relevant, 

while others are deemed irrelevant variables. Example Output of Consistency Ratio: 

('SUBSURFACE TEMP', 1.0448035431937792), 

('HUMIDITY', 1.078791988521441), ('SURFACE TEMP', 1.0970805959902372), ('WIND 

SPEED', 1.1738984861599309), ('VISIBILITY', 1.1964599746902513), ('MAX TEMP', 

1.2808760737728937), ('AIR TEMP', 1.4181559845100764), ('WET BULB TEMP', 

1.4370509159635703), ('MIN TEMP', 1.849867709823101), ('DEW POINT', 

2.001827953145505), ('PRECIP RATE', 2.2338439241972194) 

Output Schema: The output of this step is a list of variables with consistency scores within a 

0.1 range of the consistency scores of the known highly correlated variables. 

2.3.4: Extract Highly Correlated Weather Variables 
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Goal: Our method links weather variables to the malfunctions identified in Section 2.3.3. To achieve 

this, we leverage the outcomes of Section 2.3.3 and focus solely on weather variables exhibiting strong 

consistency with the signal controller data. Focusing on weather variables exhibiting strong consistency 

with the signal controller data ensures the selection of weather variables consistently correlated with 

the signal controller data. This step extracts weather variables exhibiting high local correlation during 

the malfunction period for each malfunction event. In alignment with our initial assumption, we 

consider weather variables with elevated local correlation as having a causal relationship with signal 

controller performance. This approach allows us to assess performance drops (i.e., malfunctions) in the 

signal controller data using weather variables with consistent correlations. 

Input Schema: This step uses the list of consistently correlated variables from section 2.3.3, the hourly 

averages for the weather variables from section 2.3.1, the local correlation scores from section 2.3.2, 

and the list of malfunctions in section 2.2.3. 

Method: Using the output of section 2.3.2, this step iterates over the correlation scores for each sliding 

window centered on an hour. We check the correlation score of each variable returned by the results of 

section 2.3.3 and check if it is greater than a specified threshold. In most cases, 0.8 is a reasonable 

threshold to use as it indicates a strong correlation between the weather variables and the signal 

controller data. However, we have observed that this method may fail during sudden significant 

changes in the data patterns; when this method returns nothing, this step defaults to using the three 

variables with the highest correlation scores. Once the highly correlated variables are obtained, we 

retrieve the average values of the highly correlated variables from the output of step 2.3.1. Finally, we 

iterate through the list of detected malfunctions output by step 2.2.3 and obtain the names and average 

values of the highly correlated variables. 

Output Schema: This step outputs a list of malfunctions with associated weather variables and 

average values. An example output of this process is shown in Appendix 3. 

Video Detection 

Summary: We perform Video Detection to categorize detected malfunctions returned by the 

Malfunction Detection section (2.2). Our method retrieves a specific video from our database of video 

files and uses an optical flow algorithm to determine if there is lens occlusion on the lens of any of the 

cameras at an intersection. We then assign a malfunction type based on the results of the analysis and 

pass the results into the Malfunction Database. 

2.4.1: Collect Video 

Goal: Our goal with this method is to assign video files to a specific malfunction based on the detected 

time of the malfunction and the video's timestamp. 

Input Schema: this step uses the list of detected malfunctions from section 2.2.3 as input (Figure 6). 
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Method: We retrieve the video for each malfunction at the given date and hour. For clarity, we assign a 

malfunction ID to each malfunction case 

Output Schema: The output of this step a list of malfunctions with video files corresponding to the 

location and time the malfunction occurred. 

2.4.2: Occlusion Detection 

Goal: This step determines whether lens occlusion is present in the video. We use the detected lens 

occlusion to help classify the malfunction and determine if the camera requires maintenance to clear 

the occluded lens. 

Input Schema: The input to this step is the list of malfunctions with corresponding video files (section 

2.4.1). 

Method: We iterate through each malfunction case, read the files associated with that malfunction, 

check the video frames for each video file, and calculate points of interest using Shi-Tomasi corner 

detection [1]. This step uses Lucas-Kanade optical flow [2] on the subsequent read frame to track the 

points from the original frame to the new one. Figure 7 shows the results of this process. For each read 

frame, we calculate the magnitude of the distance that each point of interest has traveled from the 

previous read frame and calculate the sum of the magnitudes for all identified points of interest for 

each read frame of the video. After reading all the video frames, we calculate the average magnitude 

across all the retrieved frames. Lens occlusion is present if the average magnitude is lower than a pre-

defined threshold. 

This method can effectively track movement on a video. For a normally operating traffic camera, we 

expect to observe cars moving across the video and higher values for the magnitude of optical flow 

calculations as cars are tracked between frames. In cases where a camera lens is occluded, we expect to 

see no cars moving as they would be blocked by whatever is occluding the camera lens. Lower optical 

flow magnitudes result from this lens occlusion, as cars are not detected and tracked throughout the 

video. Figure 8 shows an example of an occluded camera where lens occlusion was successfully 

detected. 
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Figure 7: Results of optical flow analysis on a sequence of frames. The colored dots represent points of 

interest, and the colored trailing lines are the distance and direction traveled from the previous frame. 

 

Figure 8: Example frame from a video where lens occlusion has been detected. 

If this step detects lens occlusion in a video, it returns ‘True’ for lens occlusion and ‘False’ otherwise. 

This step also returns a random frame from the video as a snapshot. This process allows us to quickly 

confirm if lens occlusion is present. 

Output Schema: This step outputs the list of malfunctions and whether or not lens occlusion was 

detected in the video during the malfunction. Snapshot files containing a frame from the video are also 

returned by this step. 

2.4.3: Assign Malfunction Type 

Goal: Our goal is to assign a malfunction type based on whether or not lens occlusion is detected in the 

video. 
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Input Schema: We use the output of section 2.4.2, the list of malfunctions with values indicating 

whether or not lens occlusion was detected. 

Method: This step iterates over all malfunctions and sets the malfunction type based on the type of 

malfunction detected. We set the type to ‘occlusion’ if lens occlusion is detected during the 

malfunction. Otherwise, it is set the type to ‘other’. 

Output Schema: This step outputs a list of malfunctions with associated types based on whether or 

not lens occlusion was detected. 

Malfunction Analysis 

Summary: Our above methods can detect, categorize, and extract weather features for malfunctions. 

In this step, we compile our results into a single table and analyze the results generated to determine 

specific trends relating to malfunctions in NIT. We split this analysis into three sections. In section 2.5.1, 

our methods generate data on how weather conditions relate to specific malfunction types and 

locations. In section 2.5.2, our methods generate data on how many malfunctions of different types 

occur for different detection technologies. In section 2.5.3, our methods generate data on how many 

malfunctions of different types occur at different locations. 

Malfunction Database: Using the results of sections 2.3 and 2.4, we iterate through the detected 

malfunctions and extract the malfunction ID, camera name, date, hour, detection technology, and 

malfunction type. We then look up the date and hour for the specific camera name from the results 

of 3.2 and retrieve the names, means, and standard deviations of all weather variables highly correlated 

with the malfunction at that time. A sample from the malfunction database is shown in Appendix 4. 

Evaluation: We use the evaluation metric Malfunction Rate specified in the Performance 

2.5.1: Weather Variable, Malfunction Type, and Detection Technology Correlation 

Goal: Our goal in this section is to determine which weather features correlate with our identified 

malfunction types/detection technologies and provide value ranges where we can expect malfunctions. 

This information will help determine maintenance schedules for camera cleaning and upkeep and guide 

MnDOT on when to check cameras for specific malfunctions and which camera technologies perform 

better in different weather conditions. We focus mainly on malfunctions with the malfunction type 

‘occlusion’ instead of the malfunction type ‘other’, as these cases require on-site cleaning to resolve. 

Input Schema: The input schema to this step is the Malfunction Database described in the 

Malfunction Database section and linked in Appendix 4. 

Method: We count the number of times a weather variable appears in the list of highly correlated 

weather variables for all entries of the same malfunction type and again for all entries of the same 

detection technology. Then, by dividing the count by the number of malfunctions of that type, we 

obtain the rate. Figures 9 and 10 show the output of this process. Note that the sum of the rates across 
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all weather variables for the same detection technology does not sum up to 1 because many weather 

variables can be highly correlated with a single malfunction (Appendix 4). The rate at which weather 

variables appear in the list of highly correlated variables for all malfunctions of the same detection 

technology lets us analyze what weather features are determined to be more highly correlated to 

malfunctions in each detection technology. The rate at which weather variables appear in the list of 

highly correlated variables for all malfunctions of the same malfunction type lets us analyze what 

weather features lead to malfunctions that will require maintenance to resolve. We then calculate each 

weather variable’s mean and standard deviation across each malfunction type/detection technology. 

The output of this process can be found in Figures 11-19. We use these results and the calculated 

malfunction rates to decide what weather conditions lead to malfunctions in each detection technology. 

We also use these results to decide what weather conditions lead to malfunctions that require 

maintenance to resolve, allowing us to recommend informed and targeted maintenance on cameras 

that experience similar conditions. 

Analysis: Analyzing malfunctions from different detection technologies, wind speed, air temperature, 

and humidity are often heavily correlated with malfunctions in cameras using the Iteris detection 

technology. Wind speed shows the strongest correlation of the three listed, appearing in 49% of all 

malfunctions in cameras using the Iteris detection technology. Referencing Figure 11a, we observe that 

malfunctions due to wind speed in cameras using the Iteris detection technology often occur at 5-7 mph 

wind speeds. Contrasting this, malfunctions in cameras using the Vision detection technology are 

caused by wind speed at a much lower rate, roughly 20%, but occur at slightly lower wind speeds of 3-

5.5 mph. While malfunctions in cameras using the Vision detection technology occur at lower wind 

speeds than those using the Iteris detection technology, the difference is minimal, with both value 

ranges only describing a light breeze [6]. These results indicate that the Iteris detection technology can 

tolerate more wind than the Vision detection technology, as malfunctions in Vision detection 

technologies occur at lower wind speeds. 

Humidity shows a slightly weaker correlation, appearing in 30% of all malfunctions in cameras 

using the Iteris detection technology, but more significantly, no malfunctions in cameras using the 

Vision detection technology are highly correlated with humidity. These results indicate that humidity, 

more specifically humidity values of around 65% (Figure 12a), uniquely affects the performance of 

cameras using the Iteris detection technology. 

Air temperature, while showing the weakest correlation of the three, appearing in only 22% of 

all malfunctions in cameras using the Iteris detection technology, affects cameras using the Iteris 

detection technology far more than those using the Vision detection technology, appearing in only 5% 

of those malfunctions. Referencing Figure 13a, we observe that malfunctions due to air temperature in 

cameras using the Iteris detection technology often occur at temperatures below 20°F. In contrast, 

malfunctions in cameras using the Vision detection technology are caused by air temperatures below 

26°F. While air temperature may have a more substantial effect on cameras using the Iteris detection 

technology compared to cameras using the Vision detection technology, our results show that cameras 

using the Vision detection technology often experience malfunctions at higher temperatures than the 

malfunctions experienced by cameras using the Iteris detection technology. These results indicate that 
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cameras using Vision technology may be slightly more robust to changes in air temperature. However, 

there are specific cases where it may fail, often at slightly higher temperatures than we would expect 

cameras using the Iteris detection technology to fail. 

Figure 9 shows that minimum temperature, surface temperature, and wet bulb temperature are 

more highly correlated with malfunctions in cameras using the Iteris detection technology when 

compared to malfunctions in cameras using the Vision detection technology. Wet bulb temperature 

shows the strongest correlation of the three listed, appearing in 28% of all malfunctions in cameras 

using the Iteris detection technology. Figure 14a shows that malfunctions due to wet bulb temperature 

in cameras using the Iteris detection technology often occur at 23°F. Contrasting this, malfunctions in 

cameras using the Vision detection technology are caused by wet bulb temperatures below 19°F. These 

results support our prior analysis that cameras using the Iteris detection technology are uniquely 

affected by humidity as cameras using the Vision detection technology as wet bulb temperature 

measurements are affected by both baseline temperature and humidity [7]. 

While showing a slightly higher correlation in malfunctions experienced by cameras using the 

Iteris detection technology, surface temperature and minimum temperature show a similar correlation 

rate in malfunctions experienced by cameras using the Vision technology. Figure 15a shows that 

malfunctions due to surface temperature in cameras using the Iteirs detection technology are caused by 

surface temperatures of 29°F. Contrasting this, malfunctions in cameras using the Vision detection 

technology are caused by surface temperatures of 20°F. We see an opposite trend in minimum 

temperature, however. Observing Figure 16a, we can see that malfunctions due to minimum 

temperature experienced by cameras using the Iteris detection technology occur at 11°F while those 

experienced by cameras using the Vision detection technology occur at 13°F. 

In figure 9, we find that maximum temperature and subsurface temperature are more highly 

correlated with malfunctions in cameras using the Vision detection technology when compared to 

malfunctions in cameras using the Iteris detection technology. Maximum temperature shows the larger 

correlation between the two, appearing in 45% of all malfunctions in cameras using the Vision detection 

technology. Figure 17a shows that malfunctions due to maximum temperature in cameras using the 

Vision and Iteris detection technologies occur at very similar values, 30°F for Vision and 28°F for Iteris. 

Referencing Figure 18a, we observe the same trend for subsurface temperature. There were 

malfunctions in cameras using the Vision detection technology at subsurface temperatures of 30°F and 

cameras using the Iteris detection technology at subsurface temperatures of 28°F. 

Observing the results from all temperature values – air temperature, minimum temperature, 

surface temperature, subsurface temperature, maximum temperature, and wet bulb temperature – we 

find contradictory results. Cameras using the Vision detection technology experience malfunctions at 

higher air temperatures, subsurface temperatures, and minimum temperatures, while cameras using 

the Iteris detection technology experience malfunctions at higher surface temperatures, maximum 

temperatures, and wet bulb temperatures. While our analysis of wet bulb temperatures explains 

humidity's unique effect on cameras using the Iteris detection technology, this does not explain 

differences seen in the other temperature variables. As these are all temperature measurements, we 
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would expect to see similar correlation scores and consistent temperature values between them, but 

this is not the case. We need to conduct further analysis on how these temperature values are 

measured and what environmental factors influence the values they measure before interpreting these 

results further. 

Analyzing both detection technologies, we find that visibility is the weather variable most often 

correlated with malfunctions, appearing in 70% of malfunctions experienced by cameras using the 

Vision detection technology and 62% of malfunctions experienced by cameras using the Iteris detection 

technology. Figure 19a shows that cameras using the Iteris detection technology experience 

malfunctions at wind speeds of 6.8 miles or higher, and cameras using the Vision detection technology 

experience malfunctions at wind speeds of 3-5.5 mph. These results confirm our baseline assumption 

that fluctuations in visibility correlate with malfunctions and demonstrate that even relatively moderate 

visibility values can cause issues with NIT technologies. 

To summarize our analysis of the different detection technologies concerning weather 

conditions, we find that cameras using the Iteris detection technology are broadly more susceptible to 

malfunctions caused by weather conditions than cameras using the Vision detection system, except for 

wind impact. The malfunctions experienced by cameras using the Iteris detection technology are highly 

correlated with more weather variables than those experienced by cameras using the Vision detection 

system, and humidity has a unique effect on them. 

Analyzing malfunctions with the ‘occlusion’ malfunction type (Figure 10), we find that these 

malfunctions correlate highly with visibility and wind speed. Specifically, malfunctions with the 

‘occlusion’ malfunction type have visibility as a highly correlated weather variable 60% of the time and 

wind speed as a highly correlated weather variable 40% of the time. Consequentially, we recommend 

using visibility and wind speed as metrics to decide when camera cleanings should occur. Visibility 

values between 6.5 and 7.5 miles (Figure 19b) and wind speeds between 5 and 7 mph (Figure 11b) 

should be a particular cause for concern, as many malfunctions caused by lens occlusion appear within 

these ranges. These malfunctions are primarily caused by wind blowing snow or dust onto the camera 

lens, causing lens occlusion. We recommend checking cameras for occluded lenses after periods with 

visibility and wind speeds within this range, as winds with these speeds can cause snow or dust to cover 

the lens. 

The temperature values in Figure 10 show that only surface and wet bulb temperatures 

correlate more with malfunctions with the ‘occlusion’ malfunction type. We also observe similar 

contradictory results to those found when analyzing camera type. Figure 13b, Figure 15b, and Figure 

16b show that malfunctions with the ‘occlusion’ malfunction type occur at higher temperatures than 

malfunctions with the ‘other’ malfunction type. In Figure 14b displays the opposite trend, with 

malfunctions of the ‘occlusion’ malfunction type occurring at a lower temperature than malfunctions of 

the ‘other’ malfunction type. Figure 17b and Figure 18b show that malfunctions with the ‘other’ and 

‘occlusion’ malfunction types occur at the same temperatures. These results confirm our conviction that 

we need to further analyze the methods used when measuring the different temperature values before 

interpreting these results. The analysis should also include a list of cameras using heated casings and 
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lenses referenced in the Task 2 deliverable, as these have a substantial effect on camera performance, 

as noted by operators. 

Output Schema: This process produces statistics on the rate at which weather variables highly 

correlate with malfunctions of a specific type and malfunctions from specific detection technologies 

(Figure 9 and Figure 10). Additionally, it outputs average values with standard deviations for weather 

variables used in our analysis (Figures 11-19). 

 

Figure 9: The rate at which weather variables are highly correlated to malfunctions per NIT device. 

 

Figure 10: The rate at which weather variables are highly correlated to malfunction per malfunction 

type. 
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Figure 11: (a) left is the mean and standard deviation values of wind speed for malfunctions of each 

detection technology; (b) right is the same calculation for malfunctions of each malfunction type 

 

Figure 12: (a) left is the mean and standard deviation of humidity for malfunctions of each detection 

technology; (b) right is the same calculation for malfunctions of each malfunction type. 
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Figure 13: (a) left is the mean and standard deviation of air temp. for malfunctions of each detection 

technology; (b) right is the same calculation for malfunctions of each malfunction type 

 

Figure 14: (a) left is the mean and standard deviation values of wet bulb temp. for malfunctions of each 

detection technology; (b) right is the same calculation for malfunctions of each malfunction 

 

Figure 15: (a) left is the mean and standard deviation values of surface temp. for malfunctions of each 

detection technology; (b) right is the same calculation for malfunctions of each malfunction 
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Figure 16: (a) left is the mean and standard deviation values of min. temp. for malfunctions of each 

detection technology; (b) right is the same calculation for malfunctions of each malfunction type 

 

Figure 17: (a) left is the mean and standard deviation values of max. temp. for malfunctions of each 

detection technology; (b) right is the same calculation for malfunctions of each malfunction 
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Figure 18: (a) left is the mean and standard deviation values of subsurface temp. for malfunctions of 

each detection technology; (b) right is the same calculation for malfunctions of each malfunction 

 

Figure 19: (a) left is the mean and standard deviation values of visibility for malfunctions of each 

detection technology; (b) right is the same calculation for malfunctions of each malfunction type 

2.5.2: Detection Technology Malfunction Rates 

Goal: This section compares the detection technologies within our study area to help determine their 

relative performance. 

Input Schema: The input schema to this step is the Malfunction Database described in the 

Malfunction Database section and linked in Appendix 4. 

Method: We compute the sum of malfunction instances for each unique date and detection technology 

combination. This process returns daily counts for the number of malfunctions experienced by all 

cameras with the same detection technology over our study period. Because the number of cameras 

with the Vision detection technology (4) and those with the Iteris detection technology (2) are unequal, 

we need to normalize the values to compare them. This is accomplished by dividing the daily counts of 

malfunctions for the Vision detection technology by 4 and the daily counts of malfunctions for the Iteris 

detection technology by 2. 

Analysis: Figure 20 shows how malfunction rates fluctuate over our study period and we can observe 

a noticeable spike in malfunctions in both detection technologies on January 4, 2023. This is expected, 

as through manually reviewing video and weather data on January 4th, we find a period of intense snow 

storms and cold temperatures many malfunctions in all NIT are expected. We also observe that cameras 

using the Iteris detection technology experience fewer overall malfunctions than cameras using the 

Vision detection system, particularly between January 1 and January 3, 2023, when cameras using the 

Iteris detection system experience no malfunctions. However, observing January 4, 2023, we find that 

cameras using the Iteris detection system experience malfunctions more than those using the Vision 

detection system. These results indicate that cameras using the Iteris detection system may experience 
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fewer overall malfunctions but are prone to increased malfunction rates during periods of severe 

weather. 

Output Schema: The output of this process is normalized values for the number of malfunctions 

experienced by different detection technologies for each day of our study period. 

 

Figure 20: A graph of the average number malfunctions over time for each detection technology. 

2.5.3: Location Malfunction Rates 

Goal: Our goal with this analysis method is to compare different intersections and the number of 

malfunctions they experience. 

Input Schema: The input schema to this step is the Malfunction Database described in the 

Malfunction Database section and linked in Appendix 4. 

Method: Compute the sum of all malfunction instances for each unique combination of malfunction 

type and camera name. 

Analysis: Figure 21 shows that the intersection at 65_81st experiences more malfunctions than any 

other intersection in our study. 47_85th experienced more ‘occlusion’ type malfunctions than any other 

intersection. 

Output Schema: This step outputs statistics on the number of malfunctions of specific types 

experienced at the different intersections in our study area. 
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Figure 21: Malfunction rates for each location and malfunction type 

Implementation Steps 

To implement this pipeline, run the code in our GitHub repository. The readme gives an in-depth guide 

on how to run the code and what to do with the outputs. 

Appendix: 

1. A sample of hourly signal controller data statistics. The “Cumu_sec” column gives the 

cumulative time the parameter was active for the hour in seconds; the “count” column gives the 

number of times the parameter turned on/off for the hour, and the ‘avg_sec’ column gives the 

average amount of time the parameter is turned on in seconds. 

intersection parameter phase date hour cumu_sec count avg_sec 

51 1 81 2023-01-01 0 283 8 35.37 

51 19 81 2023-01-01 0 30999 88 352.26 

51 29 81 2023-01-01 0 4121 81 50.87 

51 1 81 2023-01-01 1 35506 128 277.15 

51 19 81 2023-01-01 1 32134 95 338.25 

51 29 81 2023-01-01 1 35024 52 673.53 

https://github.com/knowledge-computing/MNDot
https://github.com/knowledge-computing/MNDot
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2. A sample of correlation scores between the signal controller data and each weather variable. 

The date and hour show when the sliding window used to calculate the local correlation was 

centered; all scores range from 0 to 1. 

 
Date hour VISIBILITY HUMIDITY PRECIP RATE WIND SPEED AIR TEMP 

 
1/1/2023 0 0.901 0.969 0.580 0.788 0.950 

 
1/1/2023 1 0.901 0.947 0.650 0.644 0.870 

 
1/1/2023 2 0.937 0.936 0.684 0.591 0.789 

 
1/1/2023 3 0.954 0.922 0.708 0.561 0.693 

 
1/1/2023 4 0.951 0.904 0.703 0.560 0.592 

MIN TEMP MAX TEMP WET BULB 

TEMP 

DEW POINT SURFACE 

TEMP 

SUBSURFACE 

TEMP 

0.989 0.820 0.949 0.953 0.938 0.843 

0.976 0.743 0.846 0.884 0.849 0.751 

0.960 0.708 0.761 0.828 0.756 0.663 

0.945 0.672 0.678 0.796 0.658 0.701 

0.912 0.637 0.617 0.762 0.597 0.656 

3. A sample of detected malfunctions and the associated highly correlated weather variables with 

average and standard deviation values. 

date hour location variables average Standard deviation 

1/2/2023 0 65_81st VISIBILITY, MAX TEMP, 

SUBSURFACE TEMP 

10.80, 

33.08, 30.0 

0.55, 0.27, 0.0 

1/2/2023 1 65_81st VISIBILITY 5.10 1.24 
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1/2/2023 2 65_81st VISIBILITY 3.44 0.23 

1/2/2023 3 65_81st VISIBILITY 3.05 0.13 

1/2/2023 4 65_81st VISIBILITY 3.25 0.14 

4. A sample of the malfunction database. It contains a list of detected malfunctions with 

associated dates and locations. We assign malfunction types based on the outputs of section 

2.4.3, and we assign weather variables with associated mean and standard deviations based on 

the outputs of section 2.3.4. 

 
Malfunction id Camera name date hour Detection technology Malfun

ction 

type 

 
122 694_eriver_nramp 

_vision 

1/4/2023 2 vision other 

 
123 694_eriver_nramp 

_vision 

1/4/2023 3 vision other 

 
124 694_eriver_nramp 

_vision 

1/4/2023 4 vision other 

 
125 694_eriver_nramp 

_vision 

1/4/2023 5 vision other 

 
126 694_eriver_nramp 

_vision 

1/4/2023 7 vision occlusi

on 

Weather variables Weather variable averages Weather variable standard 

deviations 

MAX TEMP 30.0 0 
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MAX TEMP, 

SUBSURFACE TEMP, 

VISIBILITY 

30.0, 29.0, 0.96 0.0, 0.0, 0.159 

MAX TEMP, 

SUBSURFACE TEMP, 

VISIBILITY 

30.0, 29.0, 0.61 0.0, 0.0, 0.05 

MAX TEMP, 

SUBSURFACE TEMP, 

VISIBILITY 

30.0, 29.0, 0.63 0.0, 0.0, 0.11 

MAX TEMP, 

SUBSURFACE TEMP, 

VISIBILITY 

30.0, 29.0, 0.89 0.0, 0.0, 0.40 
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